
Live Programming for Finite Model Finders

Allison Sullivan
University of Texas at Arlington

Arlington, TX USA

allison.sullivan@uta.edu

Abstract—Finite model finders give users the ability to specify
properties of a system in mathematical logic and then automat-
ically find concrete examples, called solutions, that satisfy the
properties. These solutions are often viewed as a key benefit
of model finders, as they create an exploratory environment
for developers to engage with their model. In practice, users
find less benefit from these solutions than expected. For years,
researchers believed that the problem was that too many solutions
are produced. However, a recent user study found that users
actually prefer enumerating a broad set of solutions. Inspired by a
recent user study on Alloy, a modeling language backed by a finite
model finder, we believe that the issue is that solutions are too
removed from the logical constraints that generate them to help
users build an understanding of the constraints themselves. In
this paper, we outline a proof-of-concept for live programming of
Alloy models in which writing the model and exploring solutions
are intertwined. We highlight how this development environment
enables more productive feedback loops between the developer,
the model and the solutions.

Index Terms—Relational Model Finders, Live Programming

I. INTRODUCTION

The expressibility of software modeling languages has

greatly expanded and the automated analysis over these models

has reached a point of efficiency where we can reason about

real world systems [34], [9], [22], [68], [13], [43], [12], [64].

However, software models are not widely adopted because

there is still the bottleneck of writing the specification. While

a formal methods expert can write the specifications, there is

no guarantee that the expert will understand the domain area

well enough to accurately capture the intricacies of the system.

Ideally, the software architect would write the specifications.

Unfortunately, modeling languages are notoriously difficult

to learn, which is compounded by software modeling toolsets

that lag behind the state-of-the-art for integrated development

environments (IDE) [2], [27], [52]. Most notably, modeling

toolsets lack quality feedback. For instance, when a model is

executed, the main result presented to the user is often a simple

boolean result: either the analysis over the model is satisfiable

or unsatisfiable. This does not give users enough context

to answer the question “did I write my model correctly?”

Additionally, a number of features that aide in composition,

such as code completion, are almost universally absent.

To address the feedback issue, there has been a rise in the

creation of finite model finders, where users write a software

model of their system’s design and the finite model finder

then produces concrete examples of behavior allowed by the

model [25], [37], [30], [6], [16], [18], [59], [50]. In this paper,

we will refer to the output of finite model finders as solutions

and the logical constraints that are executed as software
models. Clearly, in place of a boolean result, these solutions

provide more context to the user about the behavior of their

model. Furthermore, besides helping validate software designs

[35], [42], [68], [65], [11], these solutions have been used to

test and debug code [17], [36], to repair program states [51],

[67] and to provide security analysis of systems [60], [1], [3].

While these solutions are often mentioned as one of the

core benefits of finite model finders, users have found them to

be less helpful in practice [69], [33], [14]. A long held belief

is that there are too many solutions, which can overwhelm

the user. As a result, there is a whole body of work [53],

[55], [47], [46], [54], [41] dedicated to trying to reduce the

number of solutions, often by creating additional criteria a

solution must adhere too, such as minimality [41]. However,

a recent user study found that users often abandon these

tailored enumerations in favor of the default enumeration [14],

implying that users want more solutions to explore to better

understand their model and thus their system. Furthermore,

another user study with a mix of novice and expert users

found that all users struggled with inspecting solutions and

in turn, refining the model based on the solutions. Therefore,

as a community we have been solving the wrong problem.

Our theory is that the solutions, while visually approach-

able, are too divorced from the logical constraints that form

the model to actually help the user follow up on the question

“did I write my model correctly?” Finite model finders do

not convey why solutions are generated, only that they are
generated. As a result, finite model finders place the burden

on the user to determine how the abstract constraints they are

writing ultimately influence the concrete solutions. Our vision
is that a live programming environment, which interweaves

writing the model and evaluating the model, is the answer

to turning the solutions enumerated by finite model finders

into constructive feedback, which in turn, can make software

modeling approachable to the average software architect.

II. MOTIVATING EXAMPLE

In this paper, we illustrate a live programming environment

for the modeling language Alloy [25]. Alloy enables the

specification of both structural and behavioral properties in

the form of relational, first order and linear temporal logic

constraints. Alloy is packaged in an automated analysis en-

gine, the Analyzer, which utilizes Pardinus [31], a temporal

relational model finder, to enumerate solutions.

1747

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00016

(a) (b) (c)

1. one sig Queue { var head : lone Node }
2. var sig Node { var link : lone Node }
3. fact WellFormed {
4. always all n : Node | n !in n.^link
5. always all n : Node | n in Queue.head.*link
6. }
7. pred dequeue {
8. head' = head.link
9. all n : Queue.head.^link | n.link = n.link'
10. }
11. run dequeue for 3

Q0

N0 N1
link

head

Q0

N1

head

Q0

N0

head

Q0

(State 0) (State 1) (State 0) (State 1)

Fig. 1. Alloy Model of a Queue Data Structure

To highlight the limitations of the current model develop-

ment process, consider the following model of a queue data

structure seen in Figure 1 (a). To start, the user would write

the model in the text editor portion of the Analyzer. Signature

blocks introduce atoms and their relationships (lines 1 - 2).

The keyword var indicates which portions of the model can

change between states. For example, line 1 introduces a named

set Queue and defines a mutable relation head that expresses

that each Queue atom has zero or one (lone) node at the

start of the queue. Users can write named formulas in fact

(fact) blocks, which have to be true for any solution found,

or predicate (pred) blocks, which have to be true for a solution

if the predicate is invoked. To outline well-formed queues, the

user specifies no node is reachable from itself (line 4) and all

nodes are in the queue (line 5). To outline dequeue, the user

specifies the new head of the queue is the second node in the

queue (line 8) and there are no other changes to the order of

the nodes in the queue (line 9).

When the user is ready to check their constraints, the

user executes the run command on line 11. The Analyzer

will then use Pardinus to search for all satisfying solutions

such that dequeue and WellFormed are true using up to 3

Queue atoms and 3 Node atoms. These solutions are rendered

graphically in a separate pop up window, where the user can

iterate over the solutions one by one. To illustrate, Figure 1

(b) and (c) display the first two solutions the Analyzer finds. If

the user encounters a malformed solution, the user now knows

that their model allows for behavior she intended to prevent.

The user then returns to the text editor and tries to update

their current constraints to prevent the malformed solution.

However, as the user makes edits, the only way to know the

impact on the solutions is to re-execute the command and re-

start the enumeration and inspection process.

In this workflow, the burden is on the user to mentally visu-

alize the impact abstract constraints will have on the concrete

shape of the solutions, as editing the model and enumerating

solutions are distinct tasks. However, if we could integrate

writing constraints with the construction of the solutions, then

users could witness the impact of their constraints in real time.

III. LIVE PROGRAMMING FOR FINITE MODEL FINDERS

In this section, we outline our proof-of-concept of a live

programming development environment for Alloy. First, we

Fig. 2. Prototype of Suggestion Box for Formula Completion

introduce suggestion boxes that provide formula completion

suggestions with concrete illustrations of how each of the

suggested formulas would behave. Second, we highlight two

different development views that a user can toggle between:

(1) a dynamic Enumeration View, which presents the broad

impact across all possible solutions and (2) a Focus View,

which presents the narrow impact on a single solution

A. Formula Completion Suggestions

Code completion, such as presenting valid API calls to

make on an object, is a common feature in many integrated

development environments (IDE) that is a lightweight inter-

vention to help users efficiently compose their programs. The

equivalent concept for a modeling language would be formula

completion where we distill for the user valid extensions

of the formula they are actively writing. We have begun

developing a series of rules for formula completion based on

using grammar and type rules to produce valid extensions.

For instance, a relational join “a.b” will default to the

empty set if there is a type mismatch between a and b, e.g.

link.head which joins types (Node×Node).(List×Node)
will always be empty while head.link, which joins types

(List×Node).(Node×Node) will not. Therefore, if the user

starts typing “link.” we do not want to suggest head as

a continuation, but we would want to suggest link if the

user is typing “head.”. In addition, within Alloy we have a

lightweight mechanic for constraint checking through the Eval-

uator, a toolset carried over from KodKod [58]. This allows

us to provide more context by annotating our suggestions with

their actual value over a solution of the user’s choosing. We

combine completion suggestions with projected values into the

concept of a suggestion box.

To illustrate, consider the user trying to capture “all nodes

in the queue except for the first node” – which is the domain

1748

Fig. 3. Prototype of Enumeration View

of the quantified formula from dequeue. On their own, the

user may struggle to determine the order to place the relational

joins and whether to use reflexive transitive closure (‘*’) or

transitive closure (‘^’). Figure 2 highlights how our suggestion

box can aid the user in composing this domain. As the user

types “Queue.head.,” the only built in set from the base

model that does not produce an empty set is link. There-

fore, the suggestion box populates with link and common

extensions of link. With the added context of the value of

these extensions over a solution, the user can determine that

“^link” likely matches their intention.

In our final live programming IDE, we plan to enable the

user to swap the solution, which will update the projected

values. For instance, the user could update the solution in

Figure 2 to a queue with 3 nodes, and the difference between

selecting “link” and “^link” would be revealed. In addition,

we plan to explore how to make more complex suggestions

by generating our own set of common formula templates.

RexGen, a relational algebra expression generator [62], can

produce formulas to further populate our suggestion boxes.

However, in practice, RexGen produces too many formulas

to use as is. Therefore, we plan to use a recently published

corpus of all Alloy models on Github [21] to distill common

templates for formula structures, which we will combine with

RexGen to produce a small collection of complex suggestions.

These common formula templates can also be utilized for other

research, including the new but active field of automated repair

for Alloy [61], [7], [10], [23], [71].

B. Enumeration View

The main goal of live programming is for users to get

instant feedback while changing their program. For an Alloy

model, this feedback is the collection of all possible solutions

enabled by their model. Therefore, as the user adds constraints

to the model, the user is constantly shifting the boundary of

valid and invalid solutions. To bring this changing boundary

to the forefront, our Enumeration View actively display two

sets of solutions side by side with the text editor that update

every time the user’s edits create a model that compiles: a

set of valid and a set of invalid solutions. This is inspired

by a recent user study that found that novice users better

understood pre-written Alloy constraints when presented with

a combination of valid and invalid solutions [19]. The user

study, while a promising result, used hand selected solutions.

Our live programming environment will instead generate these

solutions automatically. Since we are working with logical

constraints, we can go beyond simply asking “what solutions

are valid?” and “what solutions are invalid?” Instead, we can

present four categories of solutions to the user: two valid

categories – (a) solutions that remained valid and (b) solutions

that are now valid, and two invalid categories – (c) solutions

that stayed invalid and (d) solutions that became invalid. This

is possible since we can use Alloy itself to compare and

contrast two formulas. For instance, for two iterations of a

formula (A and A’), we can execute the following command

to get category (a) “run {A and A’}” and “run {!A and
A’}” to get category (b).

To illustrate, Figure 3 shows the Enumeration View

that would be produced if the user went from a faulty

dequeue predicate in which the user used reflexive transi-

tive closure to specify the domain of the quantified formula

(“Quene.head.*link” to the correct dequeue predicate in

Figure 1 (a). Since each category would be maintained by

a command, the user can enumerate solutions within each

category. However, to avoid too high of a computational

overhead, we will first use constraint checking to see if

the currently displayed solution for a given category is still

representative. If not, then we will generate a new solution.

C. Focus View

While the output of a model is the collection of all solutions,

as a user builds a model, it is not uncommon for the user

to have a handful of key solutions in mind that the user

is expecting to confirm that their model should generate or

prevent. In fact, the adhoc practice of outlining a solution

within a predicate to reason over individually was distilled

into a unit testing framework [55]. Leaning into this practice,

the Focus View allows the user to see the impact on a single

solution as they write their constraints. Within the Focus View,

the user selects a solution and labels whether the solution

is expected to be valid or invalid for their model. As the

user writes, we constantly display the solution and it’s current

behavior (valid or invalid). As a result, the user is actively

aware of any changes that result in discrepancies.

Furthermore, we use Alloy to provide debugging informa-

tion to aid the user in understanding the current boundary

between the solution the user expects to be valid (or invalid)

and the behavior the current model prevents (or enables).

The debugging information comes in two forms. First, for a

solution s whose behavior violates its expectation, we present

the closest valid (or invalid) solution to s. We can generate

the closest behavioral solution using a Partial-Max-SAT solver.

For instance, for a solution that is expected to be valid but is

not, we can make the hard constraints those enforced by the

model and the soft constraints those outlining s. To provide

even more context, we can also automatically decompose the

difference between s and the closest behavioral solution by

presenting a breakdown of all the formulas in the model in

which the two solutions produce different truth values. This

evaluation breakdown can be done efficiently by turning the

Evaluator from a black-box toolset into a white-box toolset

1749

Fig. 4. Prototype of Focus View

that presents the intermediate evaluations discovered along the

way to producing the final truth result.

To illustrate, Figure 4 shows the Focus View in action. The

first pane is the text editor where the user just added the faulty

quantified formula for dequeue with the incorrect domain

mentioned in the Enumeration View example. In the second

pane, the user has the solution from Figure 1 (b) in view. This

solution was valid when the user only had the formula on line

7 written; however, after adding the formula on line 8, the

solution is now prevented. Therefore, the third pane displays

the current closest valid solution, which reveals to the user that

their formula results in valid behavior when the queue starts

with one node but not when the queue starts with two nodes.

The final pane shows a breakdown of the faulty quantified

formula across the two solutions. This breakdown reveals to

the user that their current model incorrectly includes the first

node in the quantified domain.

IV. FUTURE PLANS

To bring our live programming environment from a proof-

of-concept to a reality, there are two high level problems to

address throughout. First, while we have initial prototypes,

we will need to refine the design of our interfaces to ensure a

smooth transfer of knowledge without overwhelming the user

with too much information. In addition to how we present

information, there is also a question of what information is

best to present. For instance, for the starting solutions in

our Enumeration View – Should the solutions be as close to

one another as possible across categories? Should we present

maximal solutions to convey more context or is this too

cluttered? Given the usability focus of this work, it is important

that these decisions be vetted through active engagement with

novice and expert end users. To that end, we plan to conduct

multiple user studies as we build out our live programming

framework. We anticipate using students as novice users and

active members of the Alloy discourse group as expert users.

Second, we need to produce responsive implementations of

these interfaces. Across our different live programming de-

signs, we often take advantage of Alloy itself to add rich infor-

mation, such the value of suggestions or generating boundary

solutions. However, Alloy’s runtime is not nominal. Therefore,

we need to utilize existing optimizations and develop our own

to ensure that the tandem presentation of solutions does not

make the development environment sluggish. For instance, our

final backend implementation of the Enumeration View will

need to be carefully designed. There are existing bodies of

work for incremental analysis of Alloy models, which can help

ease the runtime overhead when we need to explicitly search

for new solutions [4], [70], [26], [63]. In addition, we can look

for opportunities to use constraint checking to determine the

impact of changes in order to delay, or even avoid, invoking a

SAT solver for all interfaces. Along the way, we also expect

to port the Analyzer codebase from Java to facilitate better

implementations of these visual interfaces.

V. RELATED WORK

Live programming is an active research field [56], [38],

[28], [39], [32], [5], [15], [20], [66], [45], [8], [24], [44]

that has been applied to variety of imperative, declarative

and functional languages. To the best of our knowledge, live

programming for modeling languages has only been explored

for finite state machines [57], [49]. Our suggestion boxes are in

the same spirit as projection boxes for Python, which display

the live value of variables [29]. The research most closely

related to our work for Alloy is (1) Amalgam [40], which

uses provenance chains to inform the user why a specific

tuple does or does not appear in a solution and (2) abstract

instances [48], which decomposes a solution into the parts

present to satisfy the facts versus the parts present to satisfy

predicates. Both of these aim to help the user understand why

a solution was generated, and are complementary work that

could be incorporated into a live programming environment

to provide on-the-fly explanations of solutions.

VI. CONCLUSION

Currently, the disconnect between the logical constraints

that form a model and the graphical solutions that get produced

by the model prevent users from utilizing solutions to bet-

ter understand the logical constraints themselves. This paper

presents the concept of a live programming environment for

Alloy that interweaves writing and evaluating a model. Our

proof-of-concept highlights how the interconnection of these

two artifacts enables users to fully address and follow up on

the question “did I write my model correctly?”

1750

REFERENCES

[1] Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards
a formal foundation of web security. In: 2010 23rd IEEE Computer
Security Foundations Symposium. pp. 290–304 (2010)

[2] Almstrum, V.L., Dean, C.N., Goelman, D., Hilburn, T.B., Smith, J.:
Support for teaching formal methods. In: Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Education.
p. 71–88. ITiCSE-WGR ’00, Association for Computing Machinery,
New York, NY, USA (2001)

[3] Bagheri, H., Kang, E., Malek, S., Jackson, D.: A formal approach for
detection of security flaws in the Android permission system. Formal
Asp. Comput. (2018)

[4] Bagheri, H., Malek, S.: Titanium: efficient analysis of evolving alloy
specifications. In: Proceedings of the 2016 24th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (FSE). pp. 27–38
(2016)

[5] Black, A.P., Nierstrasz, O., Ducasse, S., Pollet, D.: Pharo by example.
Lulu. com (2010)

[6] Blanchette, J., Nipkow, T.: Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. vol. 6172, pp.
131–146 (07 2010)

[7] Brida, S.G., Regis, G., Zheng, G., Bagheri, H., Nguyen, T., Aguirre, N.,
Frias, M.F.: Bounded exhaustive search of alloy specification repairs. In:
ICSE (2021)

[8] Burnett, M.M., Atwood, J.W., Welch, Z.T.: Implementing level 4 liveness
in declarative visual programming languages. In: Proceedings. 1998
IEEE Symposium on Visual Languages (Cat. No. 98TB100254). pp.
126–133. IEEE (1998)

[9] Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca,
M., O’Hearn, P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.:
Moving fast with software verification. In: Havelund, K., Holzmann, G.,
Joshi, R. (eds.) NASA Formal Methods. pp. 3–11. Springer International
Publishing (2015)

[10] Cerqueira, J., Cunha, A., Macedo, N.: Timely specification repair for
alloy 6. In: Software Engineering and Formal Methods. pp. 288–303
(2022)

[11] Chong, N., Sorensen, T., Wickerson, J.: The semantics of transactions
and weak memory in x86, Power, ARM, and C++. SIGPLAN Not. 53(4),
211–225 (2018)

[12] Cook, B.: Formal reasoning about the security of amazon web services.
In: Computer Aided Verification. pp. 38–47. Springer International
Publishing (2018)

[13] Cunha, A., Macedo, N.: Validating the hybrid ertms/etcs level 3 concept
with electrum 22(3), 281–296 (jun 2020)

[14] Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., Dougherty, D.J.:
User studies of principled model finder output. In: SEFM (2017)

[15] DeLine, R., Fisher, D., Chandramouli, B., Goldstein, J., Barnett, M.,
Terwilliger, J.F., Wernsing, J.: Tempe: Live scripting for live data. In:
VL/HCC. vol. 15, pp. 137–141 (2015)

[16] Dennis, G., Chang, F.S.H., Jackson, D.: Modular verification of code
with sat. In: Proceedings of the 2006 International Symposium on
Software Testing and Analysis. p. 109–120. ISSTA ’06 (2006)

[17] Dini, N., Yelen, C., Alrmaih, Z., Kulkarni, A., Khurshid, S.: In: Pro-
ceedings of the 33rd Annual ACM Symposium on Applied Computing.
pp. 1934–1943 (2018)

[18] Dolby, J., Vaziri, M., Tip, F.: Finding bugs efficiently with a sat solver.
In: Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering. p. 195–204. ESEC-FSE ’07,
Association for Computing Machinery, New York, NY, USA (2007)

[19] Dyer, T., Nelson, T., Fisler, K., Krishnamurthi, S.: Applying cogni-
tive principles to model-finding output: the positive value of negative
information. Proceedings of the ACM on Programming Languages
6(OOPSLA1), 1–29 (2022)

[20] Edwards, J.: Subtext: uncovering the simplicity of programming. In:
Proceedings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. pp. 505–
518 (2005)

[21] Eid, E., Day, N.A.: Static profiling alloy models. IEEE Transactions on
Software Engineering pp. 1–1 (2022)

[22] Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan, R.,
Mahajan, R., Millstein, T.: A general approach to network configuration

analysis. In: Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation. p. 469–483. NSDI’15, USA (2015)

[23] Gutiérrez Brida, S., Regis, G., Zheng, G., Bagheri, H., Nguyen, T.,
Aguirre, N., Frias, M.: ICEBAR: Feedback-Driven Iterative Repair of
Alloy Specifications (2023)

[24] Ingalls, D., Palacz, K., Uhler, S., Taivalsaari, A., Mikkonen, T.: The
lively kernel a self-supporting system on a web page. In: Self-Sustaining
Systems: First Workshop, S3 2008 Potsdam, Germany, May 15-16, 2008
Revised Selected Papers. pp. 31–50. Springer (2008)

[25] Jackson, D.: Alloy: A lightweight object modelling notation. IEEE
Transactions on Software Engineering (TSE) 11, 256–290 (2002)

[26] Jovanovic, A., Sullivan, A.: Reach: Refining alloy scenarios by size. In:
ISSRE (2022)

[27] Krishnamurthi, S., Nelson, T.: The human in formal methods. In: Formal
Methods - The Next 30 Years - Third World Congress, FM 2019, Porto,
Portugal, October 7-11, 2019, Proceedings. Lecture Notes in Computer
Science, vol. 11800, pp. 3–10. Springer (2019)

[28] Kubelka, J., Robbes, R., Bergel, A.: The road to live programming:
insights from the practice. In: Proceedings of the 40th International
Conference on Software Engineering. pp. 1090–1101 (2018)

[29] Lerner, S.: Projection boxes: On-the-fly reconfigurable visualization for
live programming. In: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. pp. 1–7 (2020)

[30] Leuschel, M., Butler, M.: Prob: A model checker for b. In: Araki, K.,
Gnesi, S., Mandrioli, D. (eds.) FME 2003: Formal Methods. pp. 855–
874. Berlin, Heidelberg (2003)

[31] Macedo, N., Brunel, J., Chemouil, D., Cunha, A.: Pardinus: A temporal
relational model finder. J. Autom. Reason. 66(4), 861–904 (nov 2022)

[32] Maloney, J.H., Smith, R.B.: Directness and liveness in the morphic user
interface construction environment. In: Proceedings of the 8th Annual
ACM Symposium on User Interface and Software Technology. p. 21–28.
UIST ’95, New York, NY, USA (1995)

[33] Mansoor, N., Bagheri, H., Kang, E., Sharif., B.: An empirical study
assessing software modeling in alloy. In: International Conference on
Formal Methods in Software Engineering. p. To Appear (2023)

[34] Mansoor, N., Saddler, J.A., Silva, B., Bagheri, H., Cohen, M.B., Farritor,
S.: Modeling and testing a family of surgical robots: An experience
report. In: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. p. 785–790. ESEC/FSE 2018,
Association for Computing Machinery, New York, NY, USA (2018)

[35] Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class diagrams analysis
using Alloy revisited. In: MODELS (2011)

[36] Marinov, D., Khurshid, S.: Testera: a novel framework for automated
testing of java programs. In: Proceedings 16th Annual International
Conference on Automated Software Engineering (ASE 2001). pp. 22–31
(2001)

[37] McCune, W.: Mace 2.0 reference manual and guide. (6 2001)
[38] McDirmid, S.: Living it up with a live programming language. ACM

SIGPLAN Notices 42(10), 623–638 (2007)
[39] McDirmid, S.: Usable live programming. In: Proceedings of the 2013

ACM international symposium on New ideas, new paradigms, and
reflections on programming & software. pp. 53–62 (2013)

[40] Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi, S.: The power of
"why" and "why not": Enriching scenario exploration with provenance.
In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (FSE). pp. 106–116 (2017)

[41] Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.:
Aluminum: Principled scenario exploration through minimality. In: ICSE
(2013)

[42] Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.:
The Margrave tool for firewall analysis. In: Proceedings of the 24th
International Conference on Large Installation System Administration
(LISA). pp. 1–8 (2010)

[43] Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M.,
Deardeuff, M.: How amazon web services uses formal methods. Com-
mun. ACM 58, 66–73 (Mar 2015)

[44] Omar, C., Moon, D., Blinn, A., Voysey, I., Collins, N., Chugh, R.:
Filling typed holes with live guis. In: Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation. pp. 511–525 (2021)

[45] Omar, C., Voysey, I., Chugh, R., Hammer, M.A.: Live functional pro-
gramming with typed holes. Proceedings of the ACM on Programming
Languages 3(POPL), 1–32 (2019)

1751

[46] Ponzio, P., Aguirre, N., Frias, M.F., Visser, W.: Field-exhaustive testing.
In: Proceedings of the Joint Meeting on Foundations of Software
Engineering (FSE). pp. 908–919 (2016)

[47] Porncharoenwase, S., Nelson, T., Krishnamurthi, S.: CompoSAT:
Specification-guided coverage for model finding. In: FM (2018)

[48] Ringert, J.O., Sullivan, A.: Abstract alloy instances. In: Formal Methods
- 25th International Symposium, FM 2023, Lübeck, Germany, March 6-
10, 2023, Proceedings. pp. 364–382 (2023)

[49] van Rozen, R., van der Storm, T.: Toward live domain-specific lan-
guages: From text differencing to adapting models at run time. Software
& Systems Modeling 18, 195–212 (2019)

[50] Samimi, H., Aung, E.D., Millstein, T.: Falling back on executable
specifications. In: Proceedings of the 24th European Conference on
Object-Oriented Programming. p. 552–576. ECOOP’10 (2010)

[51] Samimi, H., Aung, E.D., Millstein, T.D.: Falling back on executable
specifications. In: ECOOP. pp. 552–576 (2010)

[52] Siegel, A., Santomauro, M., Dyer, T., Nelson, T., Krishnamurthi, S.:
Prototyping formal methods tools: a protocol analysis case study. In:
Protocols, Strands, and Logic: Essays Dedicated to Joshua Guttman on
the Occasion of his 66.66 th Birthday. pp. 394–413. Springer (2021)

[53] Sullivan, A.: Hawkeye: User-guided enumeration of scenarios. In: 2021
IEEE 32nd International Symposium on Software Reliability Engineer-
ing (ISSRE). pp. 569–578. IEEE (2021)

[54] Sullivan, A., Marinov, D., Khurshid, S.: Solution enumeration abstrac-
tion - A modeling idiom to enhance a lightweight formal method. In:
The International Conference on Formal Engineering Methods (ICFEM).
pp. 336–352 (2019)

[55] Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.: Automated test
generation and mutation testing for Alloy. In: 2017 IEEE Conference
on Software Testing, Validation and Verification (ICST). pp. 264–275
(2017)

[56] Tanimoto, S.L.: A perspective on the evolution of live programming.
In: 2013 1st International Workshop on Live Programming (LIVE). pp.
31–34. IEEE (2013)

[57] Tikhonova, U., Stoel, J., Van Der Storm, T., Degueule, T.: Constraint-
based run-time state migration for live modeling. In: Proceedings of the
11th ACM SIGPLAN International Conference on Software Language
Engineering. pp. 108–120 (2018)

[58] Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: TACAS
(2007)

[59] Torlak, E., Vaziri, M., Dolby, J.: Memsat: Checking axiomatic specifi-
cations of memory models. In: Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation. p.
341–350. PLDI ’10 (2010)

[60] Trippel, C., Lustig, D., Martonosi, M.: Security verification via auto-
matic hardware-aware exploit synthesis: The CheckMate approach. IEEE
Micro (2019)

[61] Wang, K., Sullivan, A., Khurshid, S.: Automated model repair for Alloy.
In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE). pp. 577–588 (2018)

[62] Wang, K., Sullivan, A., Koukoutos, M., Marinov, D., Khurshid, S.: Sys-
tematic generation of non-equivalent expressions for relational algebra.
In: 6th International Conference on Abstract State Machines, Alloy, B,
TLA, VDM, and Z (ABZ). pp. 105–120 (2018)

[63] Wang, W., Wang, K., Gligoric, M., Khurshid, S.: Incremental analysis
of evolving alloy models. In: Vojnar, T., Zhang, L. (eds.) TACAS (2019)

[64] Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automat-
ically comparing memory consistency models. SIGPLAN Not. 52(1),
190–204 (jan 2017)

[65] Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automat-
ically comparing memory consistency models. In: POPL (2017)

[66] Wilcox, E.M., Atwood, J.W., Burnett, M.M., Cadiz, J.J., Cook, C.R.:
Does continuous visual feedback aid debugging in direct-manipulation
programming systems? In: Proceedings of the ACM SIGCHI Conference
on Human factors in computing systems. pp. 258–265 (1997)

[67] Zaeem, R.N., Khurshid, S.: Contract-based data structure repair using
Alloy. In: ECOOP. pp. 577–598 (2010)

[68] Zave, P.: Using lightweight modeling to understand chord. SIGCOMM
Comput. Commun. Rev. 42, 49–57 (2012)

[69] Zave, P.: A practical comparison of alloy and spin. Formal Aspects of
Computing 27, 239–253 (2015)

[70] Zheng, G., Bagheri, H., Rothermel, G., Wang, J.: Platinum: Reusing
constraint solutions in bounded analysis of relational logic. In: FASE
(2020)

[71] Zheng, G., Nguyen, T., Brida, S.G., Regis, G., Aguirre, N., Frias, M.F.,
Bagheri, H.: Atr: Template-based repair for alloy specifications. In:
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis. p. 666–677. ISSTA 2022 (2022)

1752

