AlloyFL: A Fault Localization Framework for Alloy

Tanvir Ahmed Khan
University of Texas at Arlington
Arlington, USA
txk6771@mavs.uta.edu

ABSTRACT

Declarative models help improve the reliability of software systems:
models can be used to convey requirements, analyze system designs
and verify implementation properties. Alloy is a commonly used
modeling language. A key strength of Alloy is the Analyzer, Alloy’s
integrated development environment (IDE), which allows users
to write and execute models by leveraging a fully automatic SAT
based analysis engine. Unfortunately, writing correct constraints of
complex properties is difficult.To help users identify fault locations,
AlloyFL is a fault localization technique that takes as input a faulty
Alloy model and a fault-revealing test suite. As output, AlloyFL
returns a ranked list of locations from most to least suspicious.
This paper describes our Java implementation of AlloyFL as an
extension to the Analyzer. Our experimental results show AlloyFL
is capable of detecting the location of real world faults and works
in the presence of multiple faulty locations. The demo video for
AlloyFL can be found at https://youtu.be/ZwgP58Nsbx8.

CCS CONCEPTS

- Software and its engineering — Software defect analysis.

KEYWORDS
Alloy, Fault localization, Declarative programming

ACM Reference Format:

Tanvir Ahmed Khan, Allison Sullivan, and Kaiyuan Wang. 2021. AlloyFL:
A Fault Localization Framework for Alloy. In Proceedings of the 29th ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE °21), August 23-28, 2021, Athens,
Greece. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3468264.
3473116

1 INTRODUCTION

In today’s society, we are becoming increasingly dependent on
software systems. At the same time, we also constantly witness
the negative impacts of buggy software. One way to help develop
better software systems is to leverage software models, which can
have numerous benefits throughout the software development life-
cycle. Before systems are built, models can be used to automatically
ensure design-level properties are satisfied [4, 7, 19]. After systems
are built, models can be used to automatically test and verify imple-
mentations [11]. Alloy is a declarative, first-order logic modeling

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8562-6/21/08.

https://doi.org/10.1145/3468264.3473116

Allison Sullivan
University of Texas at Arlington
Arlington,USA
allison.sullivan@uta.edu

1535

Kaiyuan Wang
Google, Inc.
Sunnyvale, USA
kaiyuanw@google.com

language that has been used to verify system designs in multiple
domains, including security [8, 13], networking [15], and UML anal-
ysis [9, 10]. A key strength of Alloy is the Analyzer, an integrated
development environment (IDE) for Alloy. The Analyzer allows
users to write Alloy models and execute commands to exercise the
model’s constraints. To execute commands, the Analyzer performs
a fully automated analysis using off the shelf SAT solvers to gener-
ate assignments to the sets and relations of the models such that a
user specified property is satisfied.

The many benefits of software models can only be achieved if
the model itself is correct. Fortunately, prior work has introduced
AUnit, a unit testing framework for Alloy, which is designed to give
users a systematic method to check if their model matches their
expectations [18]. However, if an AUnit test suite reveals a model to
be buggy, the user still needs to be able to localize and fix the faulty
portion of the model. Alloy’s expressive operators (e.g. transitive
closure, quantified formulas) allow users to write succinct formu-
lations of complex properties. Unfortunately, this same succinct
representation makes localizing faulty Alloy constraints difficult.
In the base version of the Analyzer, the only avenue users have to
localize faults is the unsat core highlighting. However, Daniel Jack-
son, the inventor of Alloy, has acknowledged that the unsat core is
insufficient [5] and the unsat core only helps when a constraint is
unexpectedly unsatisfiable. To address this, our prior work devel-
oped AlloyFL, a fault localization technique for Alloy which adapts
spectrum-based fault localization (SBFL) and mutation-based fault
localization (MBFL) techniques designed for imperative languages
to Alloy’s declarative execution environment [21].

This paper describes our efforts to create a Java implementation
of AlloyFL as an extension to the Analyzer’s standalone executable
jar (https://alloyfl.github.io). By extending the Analyzer, we are able
to give users access to AlloyFL within the existing development
workflow for Alloy models. Specifically, given a faulty model and
a fault revealing AUnit test suite, AlloyFL returns a ranked list of
suspicious abstract syntax tree (AST) node locations in the faulty
model. AlloyFL conveys this information to the user by both up-
dating the logging interface of the Analyzer to display the ranked
list and highlighting locations in the text editor based on their
suspiciousness score. Our implementation supports AlloyFLy,, a
hybrid fault localization technique which combines AlloyFL,, a
SBFL technique and AlloyFL,;;,, a MBFL technique to utilize their
individual strengths for detecting different types of faults in Alloy’s
declarative execution environment. To combine the techniques,
AlloyFLy,,, computes a score for each AST node using a formula
that aggregates AlloyFL,,’s score and AlloyFL;y,,,’s score.

2 BACKGROUND

In this section, we present a faulty Alloy model to introduce key
concepts of Alloy, AUnit and AlloyFL.

https://youtu.be/ZwgP58Nsbx8
https://doi.org/10.1145/3468264.3473116
https://doi.org/10.1145/3468264.3473116
https://doi.org/10.1145/3468264.3473116
https://alloyfl.github.io

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

. sig List { header: lone Node }

. sig Node { link: lone Node }

. pred Acyclic(l: List) {

all n: Node | n in l.header.*link => n !in n.*link }
. run Acyclic

Figure 1: Acyclic Singly-linked List

a s wN =

. val ValidListSizeTwo {
some disj List@: List { some disj Node@, Nodel: Node {
List = List@ and Node = Node® + Nodel
header = List@->Nodel and link = Nodel->Noded
Acyclic[Listo] } } 3}
run ValidListSizeTwo expect 1

Figure 2: Example AUnit Test for List

ouhwN =

Figure 1 displays a faulty model of a singly-linked list. Signature
paragraphs introduce named sets of atoms and their relations into
the model (lines 1 - 2). Line 1 introduces List as named set and
line 2 introduces Node as a named set. The relation header declares
that each List atom points to zero or one header node. Similarly,
the relation link conveys that each Node atom points to zero or one
subsequent node. Predicate paragraphs introduce named first-order
logic formulas that can be invoked elsewhere (lines 3 - 4). The
predicate Acyclic uses universal quantification (all) and reflexive
transitive closure (*) to incorrectly express the concept: “for all
nodes, if a node (n) is in the list (1) then that node n is not reachable
from itself” The fault is in red and reflects the incorrect use of
reflexive transitive closure instead of transitive closure (). Line 5
depicts an Alloy command that executes Acyclic. During execution,
the Analyzer will search for instances, which are assignments to
the sets and relations of the model such that all formulas invoked
are true. This search is restricted to a scope, a user provided upper
bound on the universe of discourse. The command on line 5 uses
Alloy’s default scope of 3, meaning that any satisfying instance will
contain at most 3 List atoms and 3 Node atoms.

AUnit addresses the need to have a systematic method to verify
the correctness of Alloy models. AUnit defines testing in Alloy’s
declarative environment — the SAT back-end looks for all satisfying
instances in one execution - by answering: (1) what is a test case
and (2) what test execution and outcomes are.Figure 2 depicts a
fault revealing AUnit test case. AUnit test cases consists of two
portions: (1) a valuation in which the user outlines an instance she
wants to reason over (lines 1-4) and (2) a command that specifies
the formulas under test (lines 5-6). A test passes if the valuation is
a valid instance of the command.The test in Figure 2 fails because
the incorrect use of reflexive transitive closure in Figure 1 builds a
set that includes the node (n) itself. Therefore, Node® and Node1 are
incorrectly considered to be “reachable from themselves.”

To use AlloyFL to localize the fault, we use an automatically gen-
erated test suite of 22 tests, including the test in Figure 2. We config-
ure AlloyFL to use the Ochiai formula [1] and compute a weighted
score using a ratio of 60% AlloyFL,, score and 40% AlloyFLy,,,score.
The output of our execution is shown in Figure 3. In the left panel,
suspicious locations for the displayed model are highlighted, with
red indicating a highly suspicious location. In the right panel, a list
of suspicious locations is depicted with supplementary information.
The actual faulty expression “(*1ink)” located within the formula “n
!in n.*1link” is revealed to be the most suspicious location with a
weighted suspiciousness score of 0.829. This fault further motivates
the difficulty in localizing Alloy bugs where the difference between

1536

Tanvir Ahmed Khan, Allison Sullivan, and Kaiyuan Wang

Table 1: Suspiciousness Formulas in AlloyFL.

Name Formula
failed(e)
Tarantula [6] totalfailed
failed(e) passed(e)
totalfailed " totalpassed
Ochiai [1] Jailed(e)
\/totalfailedx(failed(e)+passed(e))
. passed (e)
Op2 [12] failed(e) ~ totalpassed+1
. passed(e)
Barinel [2] 1= passed(e)+failed(e)
failed(e)*
DStar [22] passed(e)+(totalfailed—failed(e))
totalfailed: total number of tests that failed
totalpassed: total number of tests that passed
failed(e): number of failed tests that cover or kill e
passed(e): number of passed tests that cover or kill e

a correct expression and an incorrect one can be a single symbol
contained within a larger expression or formula.

3 TECHNIQUE

AlloyFL determines which AST nodes of a model are most likely to
be faulty. To achieve this, AlloyFL uses a suspiciousness formula
and combines two different fault localization strategies.

3.1 Suspiciousness Formulas

AlloyFL supports five different suspiciousness formulas: (1) Taran-
tula [6], (2) Ochiai [1], (3) Op2 [12], (4) Barinel [2] and (5) DStar [22].
These formulas are outlined in Figure 1 and are commonly used for
SBFL for imperative languages. For AlloyFL,,, the code elements
(e) are AST nodes. For AlloyFL,,,,, mutations of killed mutants are
treated as covered code elements (e) while mutations of live mu-
tants are treated as uncovered code elements. Since, each mutation
is tied to the AST node that gets mutated, AlloyFLy,;, scores as still
tied to AST nodes. totalfailed and totalpassed are the number of
tests which failed and passed for the original model. failed(e) and
passed(e) are the number of failing and passing tests that cover the
AST node or kill the mutant e. In general, for AlloyFL,, if a node
is covered by more failing tests but fewer passing tests, then it is
assigned a higher suspiciousness score. For AlloyFLpy,,, if a mutated
node makes more failing tests pass but fewer passing tests fail, then
it is assigned a higher suspiciousness score.

3.2 Fault Localization Strategy

The AlloyFL extension implements AlloyFLy,,, a hybrid fault lo-
calization techniques that combines the results of AlloyFL., and
AlloyFL . We first describe how AlloyFL., and AlloyFL;,, work,
and then highlight how we combine the two approaches.

3.3 Spectrum-Based Fault Localization

In traditional imperative programs, fault localization will use control-
flow and execution traces to implement spectrum-based fault lo-
calization techniques. In contrast, Alloy’s declarative execution

AlloyFL: A Fault Localization Framework for Alloy

File Edit Execute Options AUnit AlloyFL Window Help

" F ¥ & =

Open Reload Save = Execute Show | AUnit AlloyFL

4 7

[+]

sig List { header : lone Node }

sig Node { link: lone Node }

pred Acyclic (I: List) {
alln : Node | n in Lheader.*link => n lin n.flink
1

Lo I A R

val ValidListSizeTwo {
some disj List0: List {some disj Node0, Node1: Node {
List = List0
header = List0->Node0
Node = Node0 + Nodel
link = Node0->Nodel
{Acyclic[List0]}

©

10
11
12
13
14
15
1]
17)
18

Test0: run ValidListSizeTwo for 3 expect 1

\AlloyFL found 9 suspicious locations.
Runtime: 1s (AlloyFLCo: 0s, AlloyFLMu: 1s).
Ranked List: The suspicious locations are displayed below in order from most to least suspicious.
Highlight all locations
¢+ The following unary expression is found to be suspicious

» Expression: *link

» Suspiciousness score: 0.8582575694955841

+H

¢ *» The following binary formula is found to be suspicious.
» Formula: n in Lheader.*link
» Suspiciousness score: 0.7789710597904933
» Highlight location

¢ * The following binary formula is found to be suspicious.
» Formula: n !in n.*link
» Suspiciousness score: 0.7773471835825703
» Highlight location

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

AUnit Results Coverage Res

=, ults (b= AlloyFL Results

Tl

ighlight location

Figure 3: AlloyFL GUI Results

environment does not have control-flow. Instead, when a test is ex-
ecuted, every constraint in any invoked paragraph will be executed
together. As a result, all AST nodes declared in the same paragraph
share the same suspiciousness score. Therefore, AlloyFL., com-
putes a suspiciousness score for each Alloy paragraph based on the
number of passing/failing tests that cover it and a formula shown in
Table 1. However, we are able to optimize this execution viewpoint
by making use of a static analyzer that finds all Alloy paragraphs
transitively used by a test, but it ignores dependencies that are
never used. For example, if a test uses an expression "all s: S, t:
T | some s &% p[s]" where variable "t" is not used, then the test
only depends on signature "S" and predicate "p[...]". Of note, for
Alloy executions, all facts are implicitly used, and all paragraphs
transitively invoked in the facts are covered by each test. As output,
AlloyFL., produces a list of paragraphs ranked in descending order
of suspiciousness score. In case of a tie, AlloyFL,, prioritizes the
paragraph with a smaller number of AST nodes.

3.4 Mutation-Based Fault Localization

To perform mutation-based fault localization, AlloyFL,,,, uses the
set of mutation operators outlined by MuAlloy [17]. These operators
mutate different nodes in the AST representation of the model
and span the breadth of the Alloy grammar. To perform MBFL,
AlloyFL,,y, collects all AST nodes covered by the failing tests. Then,
AlloyFL,,,, iterates over each node n and applies all valid mutants to
n. A mutant is considered valid if the mutated model does not result
in a compilation error and the mutated model is not equivalent
to the original model. Unlike imperative-based mutation testing,
AlloyFL,y,, is able to use the Alloy language itself to check for
equivalence between the original and mutated models with respect
to a given bound. For every valid mutant of n, a suspiciousness
score of that mutant is calculated by executing the original test
suite over the mutated model and plugging the results into the user
selected suspiciousness formula. After exploring all valid mutants
of n, AlloyFL,,, retains the largest score found for n. Once all AST
nodes covered by failing tests are explored, AlloyFL;;,, returns the
list of AST nodes sorted in descending order of suspiciousness
scores. As with AlloyFL.o, in case of a tie, AlloyFL,;, prioritizes

1537

the paragraph with a smaller number of AST nodes. Additionally,
any AST node with a negative suspiciousness score is removed
from the final list presented to the user.

3.5 Hybrid-Based Fault Localization

AlloyFL implements AlloyFLj,,, which is a hybrid technique that
leverages both AlloyFL., and AlloyFL,,,. To achieve this, for a
given AST node n, AlloyFLy,,, calculates a weighted score for n
that combines n’s AlloyFL., (Sco) and AlloyFL,,y (Smu) scores.
Specifically, AlloyFLy,, computes the weighted sum as (1 - 1)Sco +
ASmu, where 0 < 1 < 1. AlloyFLy,, allows us to take advantage of
the fact that AlloyFL;;,,, and AlloyFL., have different strengths and
weaknesses for localizing different types of faults. Most notably,
AlloyFLy,, can struggle to localize omission errors in which case
AlloyFL¢o performs relatively well. Thus, AlloyFLy,, benefits from
both AlloyFL., and AlloyFLy,.

4 ANALYZER INTEGRATION

AlloyFL is a self contained executable jar file written in Java. Our
implementation of AlloyFL is built of top of the AUnit Analyzer [16],
which is an extension to the latest stable release of the Analyzer [3]
(version 5.0.1) that includes native support for AUnit. To support
AlloyFL, the Analyzer is extended to allow the user to: (1) configure
the AlloyFL execution and (2) update the visual feedback from the
Analyzer to reflect AlloyFL’s ranked list of suspicious locations.
The Analyzer is split into two main panels: (1) the left-hand panel
is a text editor where users can create Alloy models and (2) the
right-hand panel displays logging information. To use AlloyFL, the
user first opens or builds a faulty Alloy model and a fault revealing
AUnit test suite in the editor panel, as they would any other Alloy
model. Then, the user can configure the AlloyFL execution. AlloyFL
is packaged with the following default settings: the Ochiai suspi-
ciousness formula and a weight of 0.4 (40% AlloyFL,,, score and
60% AlloyFL,, score). The AlloyFL menu options allow the user to
change both. For the suspiciousness formula, the user is given a list
comprised of all the formulas in Table 1. For the weight, uses can
select a value between 0, which means only AlloyFL.,’s score will
be used, and 1, which means only AlloyFLy,,, score will be used.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 2: AlloyFL Model Stats and Execution Results

Model #AST #Flt #Test Scp Time (sec) Rank
addr 124 1 30 3 6 1:19
array 68 2 23 3 4 1:7

bst 175 4 110 4 48 1:37
cd 52 2 25 3 1 2:18
ctree 76 1 22 3 3 917
dll 92 2 49 3 7 1:7
fsm 85 2 15 3 2 1:27
grade 77 1 41 3 2 1:10
other 40 1 21 3 1 5:11
scl 201 3 87 3 43 1:36

Additionally, to help with the adoption of AlloyFL, the menu also
includes a prompt to view an AlloyFL tutorial.

The user can run AlloyFL either from the icon menu bar or
the AlloyFL menu. Once AlloyFL successfully executes, the user
is presented with the results in two key ways. First, all suspicious
locations are highlighted in the text editor, ranging from deep red
to indicate a highly suspicious location to light yellow indicate a
slightly suspicious location. An example of this behavior can be
seen in Figure 3. Second, AlloyFL generates a results tab which sum-
marizes the execution by presenting the total number of suspicious
AST nodes and presents a breakdown of the runtime. Additionally,
the results tab displays a ranked list of suspicious locations from
most to least suspicious. For each suspicious location, the user is
shown the constraint, the suspiciousness score, and an interactive
link which highlights the location in the editor pane. A portion
of the ranked list output can be seen in Figure 3. This individual
highlighting features helps clearly convey to user what specific
portion of the model is being referenced, as a formula or expression
may appear more than once in a model.

5 EVALUATION

We evaluate AlloyFL on a machine running Ubuntu 20.04 LTS with
1.8GHz Intel Core i7 CPU and 16 GB RAM. AlloyFL is set up to use
the Ochiai formula and an impact weight of 0.4 [21].

5.1 Real-World Faulty Subjects

We present a small but representative evaluation of AlloyFL over
10 real world faulty models. Address book (addr) is from Alloy’s
example set, which was incorrect in earlier versions of Alloy. Grade
book (grade) and other groups (other) are Alloy translations of
access-control specifications used in Amalgam [14]. Colored tree
(ctree) is from MuAlloy [17]. These four models represent faults
introduced by more experienced Alloy users. Array (array), bi-
nary search tree (bst), class diagram (cd), doubly-linked list (dll),
finite state machine (fsm), and singly-linked list with sorting and
counting (scl) are homework questions we collected from graduate
students, which reflect faults created by new Alloy users.

To convey complexity, we report four different metrics in Ta-
ble 2 related to the size of the fault localization problem: (1) column
two (#AST) show the total number of AST nodes in the model,
(2) column three (#F1t) presents the number of faults in the model,
(3) column four (#Test) depicts the size of the test suite and (4) col-
umn five (Scp) shows the maximum scope used to run the tests.
Since many of these faulty models did not come with AUnit test

1538

Tanvir Ahmed Khan, Allison Sullivan, and Kaiyuan Wang

suites, for our experiments, we automatically generated a test suite
using MuAlloy, which has been shown to be effective at revealing
faults in real world models [17, 20].

5.2 Results

To evaluate AlloyFL, we use the total execution time and the ranking
of the actual faulty location to measure efficiency and effectiveness
respectively. In Table 2 column five (Time) presents the runtime
from the time the user presses the button to run AlloyFL to the
time the results are presented to the user in seconds. AlloyFL’s
runtime does increase as both the number of AST nodes and the
size of the test suite increases, both of which increase the size of
the fault localization problem. For all executions, the AlloyFL;y,,
portion of AlloyFLj, takes up a majority of the execution time.
Since AlloyFLy,;, performs mutation testing, it is expected that
AlloyFL,;,;,’s runtime would increase as the size of the test suite
increases. However, the overhead of AlloyFL is not prohibitive as
all models run in under a minute.

Column six (Rank) presents a ratio depicting the rank of the
faulty location in the list reported to the user and the total number
of suspicious locations. For example, for the model scl, the rank 1:36
means an actual faulty location was reported as the first suspicious
location out of 36 total suspicious locations. If there is more than one
faulty location, column six will reflect the highest ranked actually
faulty node. For 7 of the 10 models, AlloyFL reports a faulty location
as the highest suspicious node. Furthermore, for cd, the top two
nodes have the same suspiciousness score; however, the real faulty
location encapsulated a larger formula and was ranked second
instead of first. While AlloyFL often reports a faulty location as
the most suspicious location, AlloyFL can struggle with under-
constrained faults (ctree and other), in which the error is the
omission of a formula. For example, for ctree, while AlloyFL is
able to flag the unconstrained fact undirected as suspicious, the
location is ranked as 9th out of 17 locations. AlloyFL also works in
the presence of multiple faults. To highlight AlloyFL’s performance
with multiple faults present, we can look at bst’s ranked list beyond
just the top result. For bst, AlloyFL flags three of bst’s four faulty
locations in the top 5 suspicious locations reported.

6 CONCLUSION

This paper introduces the open-source AlloyFL tool for fault local-
ization of Alloy models. To localize a fault, AlloyFL uses an AUnit
test suite with at least one failing test, a user-selected suspicious-
ness formula and a user selected weight, to create a ranked list
of suspicious locations in the faulty Alloy model. In addition, as
part of the reporting, suspicious portions of the model are high-
lighted from yellow to red, depending on their suspiciousness score.
Experimental results reveal AlloyFL is effective at ranking faulty
locations, works in the presence of multiple faults and localizes
faults quickly. Since AlloyFL is packaged as an extension of Alloy’s
IDE, AlloyFL paves the way for new users to explore Alloy while
benefiting form the use of AlloyFL in their development practices.

ACKNOWLEDGMENTS

This work is partially supported by the National Science Foundation
under Grant No. CCF-2042871.

AlloyFL: A Fault Localization Framework for Alloy

REFERENCES

6]

[12]

Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. 2009. A
Practical Evaluation of Spectrum-based Fault Localization. jSS (2009).

Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2009. Spectrum-based
multiple fault localization. In ASE.

Alloy analyzer Website. 2019. http://alloytools.org. (2019).

Daniel Jackson. 2002. Alloy: A Lightweight Object Modelling Notation. TOSEM
(2002).

Daniel Jackson. 2017. The Alloyed Joys of Software Engineering Research. http:
//people.csail.mit.edu/dnj/talks/icse17/icse17-nobuilds.pdf.

James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Taran-
tula Automatic Fault-localization Technique. In ASE.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. 1999. JML: A Notation for
Detailed Design. In Behavioral Specifications of Businesses and Systems.

Ferney A Maldonado-Lopez, Jaime Chavarriaga, and Yezid Donoso. 2014. Detect-
ing network policy conflicts using Alloy. In ABZ.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. CD2Alloy: Class
Diagrams Analysis Using Alloy Revisited. In MODELS.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. CDDiff: Semantic
Differencing for Class Diagrams. In ECOOP.

Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A Novel Framework for
Automated Testing of Java Programs. In ASE.

Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A Model for Spectra-
based Software Diagnosis. TSE (2011).

1539

jpory
)

™
=2

o
=

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and
Shriram Krishnamurthi. 2010. The Margrave Tool for Firewall Analysis. In LISA.
Tim Nelson, Natasha Danas, Daniel J. Dougherty, and Shriram Krishnamurthi.
2017. The Power of "Why" and "Why Not": Enriching Scenario Exploration with
Provenance. In FSE.

Natali Ruchansky and Davide Proserpio. 2013. A (Not) NICE Way to Verify the
Openflow Switch Specification: Formal Modelling of the Openflow Switch Using
Alloy. SIGCOMM (2013).

Allison Sullivan, Kaiyuan Wang, and Sarfraz Khurshid. 2018. AUnit: A Test
Automation Tool for Alloy. In ICST. 398-403.

Allison Sullivan, Kaiyuan Wang, Razieh Nokhbeh Zaeem, and Sarfraz Khurshid.
2017. Automated Test Generation and Mutation Testing for Alloy. In ICST.
Allison Sullivan, Razieh Nokhbeh Zaeem, Sarfraz Khurshid, and Darko Marinov.
2014. Towards a Test Automation Framework for Alloy. In SPIN.

Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2019. Security Ver-
ification via Automatic Hardware-Aware Exploit Synthesis: The CheckMate
Approach. IEEE Micro (2019).

Kaiyuan Wang. 2015. muAlloy — An Automated Mutation System for Alloy. Mas-
ter’s thesis. University of Texas at Austin.

Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. 2020. Fault Localization
for Declarative Models in Alloy. In ISSRE.

W. E. Wong, V. Debroy, R. Gao, and Y. Li. 2014. The DStar Method for Effective
Software Fault Localization. IEEE Transactions on Reliability (2014).

http://alloytools.org
http://people.csail.mit.edu/dnj/talks/icse17/icse17-nobuilds.pdf
http://people.csail.mit.edu/dnj/talks/icse17/icse17-nobuilds.pdf

	Abstract
	1 Introduction
	2 Background
	3 Technique
	3.1 Suspiciousness Formulas
	3.2 Fault Localization Strategy
	3.3 Spectrum-Based Fault Localization
	3.4 Mutation-Based Fault Localization
	3.5 Hybrid-Based Fault Localization

	4 Analyzer Integration
	5 Evaluation
	5.1 Real-World Faulty Subjects
	5.2 Results

	6 Conclusion
	Acknowledgments
	References

