
Towards Automated Input Generation for Sketching Alloy Models

Ana Jovanovic
The University of Texas at Arlington

Arlington, TX, USA

ana.jovanovic@mavs.uta.edu

Allison Sullivan
The University of Texas at Arlington

Arlington, TX, USA

allison.sullivan@uta.edu

ABSTRACT

Writing declarative models has numerous benefits, ranging from

automated reasoning and correction of design-level properties be-

fore systems are built, to automated testing and debugging of their

implementations after they are built. Alloy is a declarative modeling

language that is well suited for verifying system designs. While Al-

loy comes deployed in the Analyzer, an automated scenario-finding

tool set, writing correct models remains a difficult and error-prone

task. ASketch is a synthesis framework that helps users build their

Alloy models. ASketch takes as an input a partial Alloy models

with holes and an AUnit test suite. As output, ASketch returns a

completed model that passes all tests. ASketch’s initial evaluation

reveals ASketch to be a promising approach to synthesize Alloy

models. In this paper, we present and explore SketchGen2, an ap-

proach that looks to broaden the adoption of ASketch by increasing

the automation of the inputs needed for the sketching process. Ex-

perimental results show SketchGen2 is effective at producing both

expressions and test suites for synthesis.

CCS CONCEPTS

• Software and its engineering→ Formal software verification.

ACM Reference Format:

Ana Jovanovic and Allison Sullivan. 2022. Towards Automated Input Gen-

eration for Sketching Alloy Models. In International Conference on Formal

Methods in Software Engineering (FormaliSE’22), May 18–22, 2022, Pitts-

burgh, PA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3524482.3527651

1 INTRODUCTION

As software pervades our society and lives, and software failures

become increasingly costly, there is a growing need to leverage soft-

ware models to improve the quality of software systems. Alloy [13]

is a well-known modeling language that has been used in both

academic and industrial settings [9, 14, 24, 50]. Alloy models are

declarative and consist of relational, first-order logic formulas. Two

key strengths of Alloy are its expressive notation, with support for

operators like transitive closure, that allows for succinctly writing

complex structural properties, and the Analyzer, its automated anal-

ysis engine that uses off-the-shelf SAT solvers to reason over proper-

ties with respect to a user-defined scope, i.e., bound on the universe

of discourse. The Analyzer finds instances, which are assignments

FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9287-7/22/05.
https://doi.org/10.1145/3524482.3527651

to the sets and relations of the model, such that the invoked formu-

las are true. The instances discovered by the Analyzer have been

used to validate software designs [14, 26, 29, 39, 40], to test and

debug code [10, 11, 15, 23], to repair program states [30, 49] and to

synthesize security attacks for hardware architectures [4, 42, 43].

In the end, Alloy models can only help improve system reliability

if they are themselves correct. Unfortunately, writing correct Alloy

models is hard, especially for beginning users but even for advanced

users. In particular, reasoning about the correctness of constraints

in the presence of nested formulas and quantification requires much

care. Therefore, to help users write correct models from the start,

prior work introduces ASketch, an automated sketching framework

for Alloy [48]. ASketch takes as input: (1) a partial model with user

specified holes, (2) a generator which outlines the valid substitutions

into each hole and (3) a test suite which outlines the expected

behavior of the model. As output, ASketch produces a completed

model that passes all tests. Specifically, ASketch builds an Alloy

meta-model that encodes all the possible candidate models and the

test suite and then uses Alloy’s SAT backend to find a solution.

ASketch’s initial evaluation revealed ASketch to be a promising

start towards building correct from construction models, which in

turn, can lead to correct from construction systems. However, there

are a few barriers that limit the adoption of ASketch. First, ASketch

requires guidance from the user to handle expression holes by

having the user provide a regular expression that is used to generate

all possible substitutions into the hole. However, users relying on

ASketch may not be able to form a regular expression that both

adheres to Alloy’s grammar rules and is robust enough to contain at

least one solution. Second, ASketch utilizes user provided test suites

to outline the expected behavior of the model. As the complexity

of the sketch increases, so does the need for a more expansive test

suite. Unfortunately, the two automated test generation techniques

for Alloy are white box and rely on information about the formula

itself in order to produce tests. Therefore, these techniques can not

be used to create tests for ASketch.

In this paper, we present SketchGen2, a framework that looks

to tackle these problems and further automated the sketching pro-

cess. Specifically, SketchGen2 automatically creates two inputs for

ASketch. First, SketchGen2 leverages RexGen [47], a generator for

semantically non-equivalent relational expressions, to generate

candidates to fill expression holes. Second, while generating expres-

sions, SketchGen2 builds up a test suite intended for use by ASketch.

To achieve this, SketchGen2 interweaves two of RexGen’s expres-

sion generation strategies, Modulo-Instance Pruning, which prunes

expressions that are equivalent with respect to a test suite, and Dy-

namic Pruning, which prunes expressions that are equivalent with

respect to a scope. SketchGen2 mitigates the trade-offs between the

two strategies by incrementally building a test suite that ensures

58

IEEE/ACM 10th International Conference on Formal Methods in Software Engineering

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA A. Jovanovic and A. Sullivan

one sig List { header: lone Node }

sig Node { link: lone Node }

pred Acyclic() {

\Q,q\ n: Node | n \CO,co\ \E,e\ => n \CO,co\ \E,e\
}

q := {| all|no|some|lone|one |}

co := {| =|in|!=|!in |}

e := {| (List.header|n).(~?)(*|^)link |}

Hole ‘e’ Generator Values

List.header.*link n.*link

List.header.^link n.^link

List.header.�*link n.�*link
List.header.�^link n.�^link

Figure 1: ASketch Input for a Singly-Linked List

the collection of expressions produced by Modulo-Instance Prun-

ing equals that of Dynamic Pruning. Our experimental evaluations

show that SketchGen2 is effective at generating inputs for sketching

models and is well-suited to strengthen an initial, small test suite.

This paper makes the following contributions:

Expression Generation for Sketching: We introduce a new

framework for efficiently generating all non-equivalent expres-

sions up to a given bound, which leverages Dynamic Pruning and

Modulo-Instance Pruning from RexGen.

Test Generation for Sketching:We introduce a new AUnit test

input generation technique that can work in a sketching environ-

ment.

Experiments:We present an experimental evaluation with small,

but intricate Alloy formulas. We demonstrate how SketchGen2 mit-

igates scalability concerns compared to directly using RexGen as

input to ASketch.

Open Source: We release a prototype of SketchGen2 and a our

collection of model sketches so researchers can use them in the

future. The repo is available at https://SketchGen.github.io.

2 BACKGROUND

In this section, we present an example sketch to introduce key

concepts of Alloy, ASketch and RexGen.

2.1 ASketch

To illustrate how ASketch works, consider the sketch of a singly-

linked acyclic list model in Figure 1. In Alloy, the signature (sig)

declaration introduces a named set of atoms, which creates a user-

defined type. Therefore, the signature List introduces a named set

of list atoms and the addition of the keyword one restricts this set

to be a singleton set, i.e. there is always exactly one List atom. A

signature may optionally declare fields. List introduces the field

header as a binary relation of the type List × Node. The addition of

the keyword lone makes header a partial function, i.e., each List

atom maps to at most one Node atom. Likewise, the signature Node

establishes a named set of node atoms and introduces the field link

as a partial function of type Node×Node. The predicate (pred) Acyclic

introduces a named formula which can be invoked elsewhere.

The body of the Acyclic predicate is a formula sketch with three

different kinds of holes: \Q,q\ (quantifier hole), \CO,co\ (comparison

operator hole), and \E,e\ (expression hole). ASketch extends the

Alloy grammar [41] with these holes. Each hole states the syntactic

kind of the hole followed by an identifier, e.g., E followed by e.

Each identifier refers to a regular expression (within {| ... |},

following [34]). To illustrate, in this example, the generator for ‘e’ is

a regular expression that encodes eight different Alloy expressions,

outlined in the bottom of Figure 1. The variable n is introduced by

the quantifier (to be sketched) and is of type Node.

For this example, the goal of ASketch is to find a substitution into

each hole in the sketch, such that the formula ends up representing

the concept: “any node in the list is not reachable from itself.” To

determine if this behavior is met, ASketch uses AUnit test suites as

a way to relay expectations. An AUnit test consists of two compo-

nents: (1) a valuation, which is an assignment to all the sets and

relations of the model, and (2) a label, which indicates whether the

associated valuation should be allowed (valid) or prevented (invalid)

by a given Alloy command. Figure 2 graphically illustrates five test

valuations for our singly linked list model. Three valuations—𝑇0,
𝑇1, and 𝑇4—are valid and two valuations—𝑇2 and 𝑇3—are invalid
with respect to the to be sketched Acyclic constraint. ASketch de-

termines that a given candidate model, a complete model being

evaluated as a potential solution, is correct if the candidate model

passes all tests.

Consider using ASketch to complete all five holes. The two ex-

pression holes \E,e\ use the same regular expression to create the

fragment space, which expands into 8 unique expressions. For the

operator holes, the fragments depicted capture all possible substi-

tutions allowed by the Alloy grammar. In particular, there are five

quantifiers for \Q,q\ (all, no, some, lone, and one) and four compari-

son operators for \CO,co\ (=, in, !=, and !in). In total, there are 5, 120
(5 × 4 × 8 × 4 × 8) candidate Alloy models. To run this example, we

use 12 test cases to outline expected behavior (5 shown in Figure 2

plus 7 more generated by SketchGen2 and shown in Figure 3). To

complete the sketch, ASketch takes less than 1 second when solving

the entire Alloy meta-model that encodes all 5,120 possible models

and 12 test cases at once. Here is a solution ASketch finds:

all n: Node | n in List.header.*link => n !in n.^link

The Alloy keyword ‘all’ represents universal quantification, ‘in’

represents the subset, the operator ‘.’ represents relational join, the

operator ‘*’ represents reflexive transitive closure, and the operator

‘^’ represents transitive closure. Thus, this universally quantified

formula states that “for all nodes, if a node is in the list, then that

node is not reachable from itself following one or more traversals

down its link relation.”

2.2 Challenge: Automatically Generating
Expressions for ASketch

Using only a regular expression to fill expression holes is a tradeoff.

The regular expression helps keep the search space of possible

sketches tractable. However, not only does the regular expression

need to generate valid Alloy expressions, it also needs to generate an

Alloy expression that can successfully complete the sketch. This can

be a high burden for a new Alloy user, who is more likely to adopt

ASketch. Currently the task of providing an expression fragment

list can be automated using RexGen [47]. RexGen is a generator that

produces relational expressions up to a user provided bound on

59

Towards Automated Input Generation for Sketching Alloy Models FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA

𝑇 0 𝑇 1 𝑇 2 𝑇 3 𝑇 4

L0 L0

N0

header

L0

N0

header

link

L0

N0 N1

header

link

L0

N0 N1

header

link

valid valid invalid invalid valid

Figure 2: Five test valuations shown graphically: 𝑇 0, 𝑇 1, and 𝑇 4 are valid, while 𝑇 2 and 𝑇 3 are invalid for acyclicity. 𝐿0 is the list
atom; 𝑁 0 and 𝑁 1 are node atoms.

the cost of the expression. Expression generation happens bottom

up starting with a cost of 1 and building to larger costs. To avoid

generating lists that are too large to be useful, RexGen offers three

automatic pruning modes: (1) Static Pruning directly prunes from

generation many equivalent expressions based on a suite of known

equivalence rules; (2) Dynamic Pruning uses the Analyzer during

generation to prune equivalent expressions; and (3)Modulo-Instance

Pruning allows the user to provide AUnit test cases, and prunes an

expression if it is equivalent to some generated expression with

respect to all given test cases (even if not equivalent over some

other unseen test cases [2]).

As an example, consider using the different pruning methods to

determine whether to keep or prune the following expressions for

hole e: header.^link and header.^
�link. Static Pruning would gen-

erate and keep both expressions, as there is no known equivalence

rule, such as commutativity, that would eliminate one expression

with respect to the other. Dynamic Pruning would use the following

Alloy command to determine if the two expressions are equivalent:

check { header.^link = header.^~link } for 3

In this case, the Analyzer would find a counterexample; therefore,

Dynamic Pruning would view the two expressions as not equivalent

and keep both. If we consider the five test cases in Figure 2,Modulo-

Instance Pruning would evaluate both expressions across all five

tests resulting in the following values:

Expression 𝑇 0 𝑇 1 𝑇 2 𝑇 3 𝑇 4

header.^link ∅ ∅ {L0->N0} {L0->N0, L0->N1} ∅

header.^
�link ∅ ∅ {L0->N0} {L0->N0, L0->N1} ∅

Thus, Modulo-Instance Pruning would view these two expressions

as equivalent, prune the higher cost expression (header.^�link) and
keep the lower cost expression (header.^link).

For our singly-linked list model, if the user invokes RexGen to

generate expressions up to a cost of 6, which is need to produce the

expression List.header.*link from the oracle solution, RexGen gen-

erates 214 expressions with Static Pruning, 107 with Dynamic Prun-

ing, and 107 with Modulo-Instance Pruning (using all 12 test cases).

For this model and corresponding test suite, the lists produced by

Dynamic Pruning and Modulo-Instance Pruning are equivalent due

to the strength of the test suite, although this is not guaranteed.

The generation time for Static Pruning is less than 1 second, for

Dynamic Pruning is 34 seconds, and for Modulo-Instance Pruning

is 5 seconds. To solve the sketch using these expressions, ASketch

takes 145 seconds using Static Pruning and takes 9 seconds using

both Dynamic Pruning and Modulo-Instance Pruning. All together,

this produces a total runtime (expression generation + sketching) of

146 seconds, 43 seconds, and 13 seconds for Static Pruning, Dynamic

Pruning and Modulo-Instance Pruning respectively.

As sketches become more complex, using RexGen to fill expres-

sion holes for ASketch becomes difficult. While Dynamic Pruning

creates an optimal list of expressions, Dynamic Pruning is time

intensive. Specifically, Dynamic Pruning requires multiple invoca-

tions of a SAT solver to resolve all of the Alloy “check” commands

needed to determine if an generated expression should be kept.

Accordingly, previous experiments [47] have shown that Dynamic

Pruning takes on average 2288.4× longer than Static Pruning and

31.0× longer than Modulo-Instance Pruning. However, these same

experiments show that Static Pruning generates a list that is 1.5×

larger than Dynamic Pruning and 2.7× larger than Modulo-Instance

Pruning. The size of the expression list can have an exponential

impact on the search space when more than one expression hole is

present in the sketch. As an example, consider our example singly-

linked list model. Static Pruning creates a search space of over 3.6

million candidate models while Dynamic Pruning creates a search

space of just 915,920 candidate models, which is 4× reduction in size.

With all these tradeoffs taken into account,Modulo-Instance Pruning

is often used as a compromise between the other two generation

strategies. Yet, Modulo-Instance Pruning has its own tradeoff: if the

test suite is not robust enough, the set of expressions produced will

aggressively over prune non-equivalent expressions.

2.3 Challenge: Quality of the Test Suite

As with any synthesis technique that is based on test suites, ASketch

is dependent on the quality of the test suite used to outline expected

behavior. If the test suite is too weak, ASketch can find a plausible

solution, a completed model that passes all tests but does not match

the end user’s expectation. A user would ideally want to runASketch

with a robust test suite that produces only correct sketches. In

practice, this can be hard. As seen in our evaluation in Section 4.1,

the possible search space of some sketches is immense, e.g. remove

has 5.7 × 1011 candidate models. This can require an extensive test
suite to avoid plausible solutions.

While Alloy’s known test generations cannot work on a sketch,

a key advantage of sketching Alloy models is that we can use the

Alloy language itself to alleviate concerns about plausible solutions

and increase the quality of the test suite. Namely, we can search

60

FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA A. Jovanovic and A. Sullivan

for two solutions, and then use the Analyzer to check if the solu-

tions are equivalent. If they are not, the Analyzer will produce a

counterexample, which can then be turned into an additional test

case. However, there are some limitations to this approach. First, it

requires searching for multiple potential solutions, which can signif-

icantly increase the runtime of ASketch. In the worse case, if there is

only one valid solution in the search space, then ASketch would end

up exploring the entire search space, even if the solution was found

in the beginning. Second, there is no clear stopping condition. For

instance, we could check the first ‘X’ solutions, but there is no way

to know in advance what value to set ‘X’ to for every model and this

value can vary significantly depending on the quality of the initial

test suite. Third, ASketch is not well suited for incremental analysis.

When a new test is added, the meta-model is extended to encode

the new test and then the SAT solver is re-invoked. Unfortunately,

the SAT solver does not remember which candidate solutions it had

already eliminated in the previous run. This is crucial, as all the

previously eliminated candidate solutions are still invalid: simply

adding a new test will not make an eliminated candidate solution

now pass the test(s) it previously failed.

SketchGen2 is designed to address both of these challenges. By

design, SketchGen2 runs a series of smaller dynamic pruning prob-

lems over pre-partitioned sets of expressions, enabling the ap-

proach to avoid Dynamic Pruning’s scalability issues. In addition,

since SketchGen2’s expression list is equivalent to Dynamic Prun-

ing’s, SketchGen2 does not overprune expressions the way Modulo-

Instance Pruning can and does not miss equivalences the way

Static Pruning can. While generating expressions, SketchGen2 also

strengthens the user’s initial test suite. Importantly, every new

test created by SketchGen2 distinguishes between at least two ex-

pressions, which contributes to the ability of the new test case to

eliminate candidate models and reduce the likelihood of discovering

a plausible solution.

3 TECHNIQUE

In this section, we introduce SketchGen2, a framework for automatic

input generation for ASketch. We first present how SketchGen2

intertwines Modulo-Instance Pruning and Dynamic Pruning. Then,

we step over how the impact of creating a new test is resolved.

3.1 CombiningModulo-Instance Pruning and
Dynamic Pruning

A naive approach would require running both Modulo-Instance

Pruning and Dynamic Pruning in their entirety, and then using the

difference in the sets produced to expand the test suite. However,

the motivation behind Modulo-Instance Pruning is to eliminate the

high runtime overhead of Dynamic Pruning. Our key insight is to

first useModulo-Instance Pruning to partition the space of candidate

expressions into an initial set of equivalence classes. The expres-

sions in each equivalence class may truly be equivalent, or there

may be some test case not currently in the test suite that distin-

guishes their behavior. However, expressions in one equivalence

class are guaranteed to not be equivalent to any expressions in

another equivalence class. Therefore, we can reduce the burden of

Dynamic Pruning by only dynamically checking the equivalence of

expressions placed in the same equivalence class byModulo-Instance

Algorithm 1: SketchGen2 Expression and Test Generation

Input: Parsed Alloy model module, Map of representative

expression to equivalent expressions equivClasses.

Output: Non-equivalent expression list and an AUnit test suite.

1 // Initialize helper variables

2 int index = 0

3 ArrayList<Expr> toCheck = equivClasses.keySet()

4 ArrayList<TextCase> newTests = new ArrayList<TestCase>()

5 while index < toCheck.size() do

6 Expr classRep = toCheck.get(index)

7 ArrayList<Expr> exprs = equivClasses.get(classRep)

8 ArrayList<Expr> skip = new ArrayList<Expr>()

9 foreach Expr curr : exprs do

10 // Did a new test move this expression to diff class?

11 if skip.contains(curr) then break

12 // Check for equivalence dynamically

13 Command equivCheck = genCmd(classRep, curr, module)

14 A4Solution sol = module.executeCmd(equivCheck)

15 if sol.satisfiable() // Not equivalent then

16 // Create new test case using counterexample

17 TestCase test = new TestCase(sol, genLabel())

18 newTests.add(test)

19 toCheck.add(curr)

20 equivClasses.put(curr, new ArrayList<Expr>())

21 equivClasses.get(classRep).remove(curr)

22 // Enforce the impact of this test on the current class

23 ArrayList<Expr> temp = new ArrayList<Expr>()

24 temp.addAll(equivClasses.get(classRep)

25 equivClasses.get(classRep).clear()

26 ArrayList<Expr> classOpt = new ArrayList<Expr>()

27 classOpt.add(classRep), classOpt.add(curr)

28 foreach Expr expr : temp do

29 boolean unique = true

30 String result1 = getExprValue(expr,test)

31 for i← 0 to classOpt.size() do

32 String result2 =

getExprValue(classOpt.get(i),test)

33 if result1.equals(result2)) then

34 unqiue = false

35 equivClasses.get(classOpt.get(i)).add(expr)

36 // Flag that this expr moved to a new class

37 if i > 0 then skip.add(expr)

38 break

39 if unique // This expression forms a new class then

40 toCheck.add(expr)

41 equivClasses.put(expr, new ArrayList<Expr>)

42 classOpt.add(expr)

43 // Flag that this expr moved to a new class

44 skip.add(expr)

45 // Enforce the impact of this test on remaining classes

46 for idx 𝑔𝑒𝑡𝑠 index + 1 to toCheck.size() do
47 updateEquivClass(equivClasses, toCheck.get(idx))

48 index++

49 return newTests, equivClasses.keySet()

61

Towards Automated Input Generation for Sketching Alloy Models FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA

Pruning. Moreover, the counterexamples produced when running

these narrower Dynamic Pruning executions can strengthen the

original test suite, so that the test suite is now capable of detecting

the non-equivalence between the two expressions. To illustrate

how this works, Algorithm 1 shows the details of SketchGen2.

To start, SketchGen2 executes after a regular Modulo-Instance

Pruning execution of RexGen. As input, SketchGen2 takes the parsed

Alloy model (module) and a map outlining the equivalence classes

created by RexGen (equivClasses), which maps a representative

expression to a list of all expressions that are considered equiv-

alent to this representative expression. Next, the first few lines

of the algorithm initialize helper variables: toCheck is a list of all

representative expressions, index tracks which equivalence class is

being evaluated from toCheck, and newTests stores any new tests

generated by SketchGen2.

After initializing the variables, the remainder of the algorithm

looks to implement the narrowed series of Dynamic Pruning ex-

ecutions over the equivalence classes found by Modulo-Instance

Pruning. First, an outer while loop (line 5) iterates until all equiva-

lence classes captured in toCheck have been explored. If the original

test suite is inadequate, and Modulo-Instance Pruning over-pruned

expressions, the list toCheck will get updated with any newly dis-

covered equivalence classes. For each equivalence class, SketchGen2

first creates a series of local variables: classRep stores the repre-

senative expression depicting the current equivalence class, exprs

stores a list of all expressions currently believed to be equivalent to

the representative expression, and skip stores a list of expressions

from the current class that have been moved to a new class due to

the creation of a new test.

Then, the for loop starting on line 9 evaluates each expres-

sion (curr) in the equivalence class, to determine if the expression

is truly equivalent to representative expression (classRep). First,

SketchGen2 checks if curr is in skip (line 11). If this check is true,

then a new test has already illustrated curr is not equivalent to

the class representative; therefore, SketchGen2 skips evaluating this

expression and moves onto the next expression in the class. If this

check is false, SketchGen2 uses the SAT solver to dynamically check

if the two expressions are equivalent with respect to a given scope

(lines 13-14). If the call is unsatisfiable, then the expression remains

pruned. However, if this call to the SAT solver is satisfiable; then,

the two expressions are actually not equivalent. As a result, the

counterexample found by the SAT solver, which highlights the dif-

ference in behavior between the two expressions, gets turned into a

new test case and curr (1) gets moved to its own equivalence class,

(2) gets added to the list of equivalence classes to check and (3) gets

removed from classRep’s equivalence class (lines 21 - 27).

To illustrate, consider the following extended equivalence class

from our example in Section 2: 𝑒𝑐𝑖=〈header.^link, {header.^�link,
header.link.^link}〉 where header.^link is the representative ex-

pression of 𝑒𝑐𝑖 and {header.^�link, header.link.^link} is the set
of expressions that are equivalent to the representative expression

across all tests (𝑇 0 - 𝑇 4 from Figure 2). To determine if the the first

expression in the list is equivalent representative expression, we

make the following dynamic check:

check { header.^link = header.^~link } for 3

The Analyzer produces the following counterexample, displayed

graphically below:

L0

N0 N1 N2

header

link link

This counterexample depicts a list with 3 nodes and no cycles.

As a result, this counterexample would be labeled valid, turning

this counterexample into test 𝑇5 (following the existing tests in
Figure 2). Since this new test case reveals header.^�link is different
from 𝑒𝑐𝑖 ’s representative expression, the expression header.^

�link
gets placed in its own equivalence class, 𝑒𝑐 𝑗 , and added to the pool
of classes to be checked.

3.2 Impact of New Tests

Since SketchGen2 may generate new tests, the equivalence class an

expression belongs to may change as SketchGen2 executes, which

is what the remainder of Algorithm 1 focuses on. Specifically,

SketchGen2 checks if the remaining expressions in the equivalence

class still hold the same behavior as the representative expres-

sion, classRep, in the presence of the new test. To achieve this,

SketchGen2 first gathers all of the expressions in the current equiva-

lence class into a temporary list (temp) (lines 23-24) and then resets

the equivalence class (line 25). The variable classOpt is used to

maintain a list of all the equivalence classes that the expressions

captured in temp can get sorted into and is expanded when a new

equivalence class is discovered.

To redistribute the expressions in temp, SketchGen2 loops over

each expression (line 28) to determine if the expression is repre-

sented by an expression in classOpt (lines 31 - 38) or is a new

equivalence class (lines 39 - 44). SketchGen2 uses the helper method

getExprValue to determine an expression’s evaluation over a given

test case, which usesModulo-Instance Pruning’s memoization infras-

tructure to avoid re-evaluating the same expression over the same

test case. If SketchGen2 determines that an expression has moved

out of the current equivalence class, the expression gets flagged

(lines 37, 44) so that these expressions are not dynamically checked

due to the outer for loop on line 9, which both avoids an unneces-

sary invocation of the SAT solver and prevents the generation of

duplicate test cases.

To illustrate, for 𝑒𝑐𝑖 , this means runningModulo-Instance Pruning
to determine what equivalence class – either 𝑒𝑐𝑖 , 𝑒𝑐 𝑗 or neither –
header.link.^link is in now that 𝑇5 needs to be accounted for.

Over 𝑇 5, the three expressions from 𝑒𝑐𝑖 resolve to the following:

header.^link = {L0->N0, L0->N1}

header.^~link = {}

header.link.^link = {L0->N0}

This reveals that “header.link.^link” is not equivalent to either ex-

pression; therefore, header.link.^link gets put into its own equiva-

lence class, 𝑒𝑐𝑘 . If there were any remaining expressions in 𝑒𝑐𝑖 , then
they would also be checked to see if they belong to one of the three

known equivalence classes (𝑒𝑐𝑖 , 𝑒𝑐 𝑗 , or 𝑒𝑐𝑘) or if the expression is
also different over 𝑇 5, resulting in another equivalence class.

62

FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA A. Jovanovic and A. Sullivan

Table 1: Basic information of models.

Model #Sig #Rel #PVar Scope

bempl 6 3 38 5

btree 2 2 24 3

contains 3 3 27 3

dll 2 4 72 3

dijkstra 3 1 57 3

fsm 2 3 40 5

grade 5 4 48 4

graph 1 1 30 3

remove 3 6 48 3

sll 2 2 15 3

The new tests do not just impact the current equivalence class,

but also impact all remaining unchecked equivalence classes. There-

fore, lines 46-47 reshape the remaining equivalence classes by in-

voking the helper method updateEquivClasses. The method update

EquivClasses’s implementation is nearly identical to the steps to

re-partition the active equivalence class (lines 23 - 44). The only

difference is that updateEquivClasses does not need to flag any

expressions to skip. While adding tests may change unexplored

equivalence classes, SketchGen2 does not need to backtrack and

re-check any previously explored equivalence classes, as those will

have already been shown to be full of equivalent expressions using

Dynamic Pruning. Therefore, updateEquivClasses is only called for

the equivalence classes after the current index location. Once all

equivalence classes are checked, including any newly identified

ones, SketchGen2 has produced a set of expressions equivalent to

Dynamic Pruning’s expression list as well as a more robust test suite.

SketchGen2’s output is designed to be integrated with ASketch: the

expressions produced can be directly used as is, while the user does

need to first provide an oracle for the test cases.

4 EVALUATION

We evaluate SketchGen2 on 10 Alloy models, previously used to

evaluate ASketch [45]. All experiments were performed on Ubuntu

20.04.2 LTS with 1.8 GHz Intel Core i7-10510U and 16GB of RAM.

4.1 Set Up

The models used in the evaluation include: an access control model

for entering rooms (bempl), a binary tree (btree), list operation

contains (contains), dijkstra’s deadline prevention (deadlock),

a doubly-linked list (dll), a finite state machine (fsm), a process

control model for grading assignments (grade), a connected graph

(graph), list operation remove (remove) and a singly-linked list

(sll). For each model, the authors select a predicate in the model and

abstract the entire formula into a sketch, excluding any attributes

of the formula ASketch does not currently support.Table 1 shows

the basic information of these models. Model is the name. #Sig

is the number of signatures declared in each model. #Rel is the

number of relations declared in each model. #PVar is the number

of primary variables when we run an empty command (run {})

without test-specific constraints; it represents the basic complexity

of signature declarations and constraints that always hold in each

model. Scope shows the upper bound on the universe of discourse.

In this section, we address the following research questions:

RQ1: How does the size of the starting test suite impact the perfor-

mance of SketchGen2?

RQ2:What is the expression generation efficacy of SketchGen2?

RQ3:What is the sketch efficacy of SketchGen2?

RQ4:What is the quality of test suites produced by SketchGen2?

4.2 RQ1: Test Suite Impact

Table 2 presents SketchGen2’s performance when different sized

test suites are used to start the technique, focusing on time and

the size of the test suites produced, as all result in the same set

of expressions. Details about the list of expressions generated by

SketchGen2 can be seen in Table 3. For Table 2, the columnModel

shows the model under consideration. One model, deadlock, has

two expression holes, each with a different set of domains, resulting

in two rows in the table. The headings Start X represent the three

different configurations: starting SketchGen2 with 1, 5 and 10 test

cases respectively. The test suites all start with the same test cases,

i.e. the first five tests for the Start 10 configuration are the five

tests used for the Start 5 configuration. For each configuration, we

present three pieces of information: the number of tests generated

by SketchGen2 (#Gen), the total number of tests, which is the size

of the starting test suite plus the number of generated tests (#Total)

and the execution time in milliseconds (Time).

Since SketchGen2 works by first running Modulo-Instance Prun-

ing, our expectation is that starting with too small of an initial test

suite would result in SketchGen2 relying more on the expensive dy-

namic equivalence checks and relying less on the cheaper modulo

test checks, inflating the runtime. The results in Table 2 supports

this assumption, although the results reveal that the difference in

runtime between configurations is overall minor. On average, the

Start 1 configuration takes 1.1× longer than both Start 5 and Start

10 configurations. Corresponding, the Start 5 configuration takes

on average 1.03× longer than the Start 10 configuration. Of note,

for 9 of the 11 executions, all three configurations finish within

four seconds of each other. The two exceptions are the two mod-

els which generate the most expressions: btree and remove. For

btree, the three configurations finish within 40 seconds of each

other, with the Start 5 configuration being the fastest. For remove,

the three configurations finish within 10 seconds of each other,

with the Start 10 configuration being the fastest.

In terms of test generation, the Start 1 configuration creates the

most tests. In the worst case, for remove, the Start 1 configuration

generates 5 and 9 more tests than the Start 5 and Start 10 config-

urations, respectively. However, the Start 1 configuration is not

always an increased burden. For deadlock, all three configurations

generate the same number of tests and for btree, both the Start 1

and Start 5 configurations produce two less tests than the the Start

10 configuration. On average, the number of new tests generated

for each configuration is 24 (Start 1), 21 (Start 5) and 19 (Start

10). The decrease in the number of tests generated corresponding

with a larger starting test suite is expected, as having less tests

means that there is likely more undetected equivalences that need

to be accounted for. Of note, the average number of new tests cre-

ated for all configurations is similar to Alloy’s coverage-based and

mutation-based test generation techniques [40], which also rely

63

Towards Automated Input Generation for Sketching Alloy Models FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA

Table 2: Test suite details for SketchGen2 using different starting test suites.

Model
Start 1 Start 5 Start 10

#Gen #Total Time #Gen #Total Time #Gen #Total Time

bempl 10 11 1007 6 11 974 2 12 923

btree 54 55 240452 54 59 227267 56 66 266605

contains 31 32 16070 28 33 17283 26 36 18023

deadlock 3 4 198 3 8 340 3 13 317

deadlock2 5 6 2996 3 8 1831 1 11 2063

dll 26 27 5954 25 30 5599 26 36 6620

fsm 21 22 6026 17 22 5620 15 25 5839

grade 12 13 1440 10 15 3156 8 18 1168

graph 10 11 1992 5 10 1678 2 12 1718

remove 79 80 230223 74 79 235759 70 80 226075

sll 12 13 4910 7 12 4156 3 13 2645

on human oracles, and is small enough that it is feasible for a user

to label the test cases. For the overall test suite, all configurations

result in an average final test suite sizes that are nominally different

from one another: 25 (Start 1), 26 (Start 5) and 29 (Start 10).

While the overhead of all three configurations is similar to each

other, the results in Table 2 point to a few trends. The Start 1

configuration generates the highest number of new tests but often

has the smallest total test suite. At the same time, the Start 1

configuration also frequently takes the longest to run. In contrast,

the Start 10 configuration often generates the least number of new

tests, but also frequently ends up with the largest total test suite.

Meanwhile, the Start 5 configuration generates expressions the

fastest more often than the other two configurations. Given the

higher runtime of the Start 1 configuration and the diminishing

returns of starting with a higher amount of tests, we use the Start

5 configuration in the remainder of our experiments. In terms of

easing the adoption of ASketch, manually creating 5 diverse test

cases requires a small amount of effort from the user but still results

in an efficient SketchGen2 execution. At the same time, it is worth

noting that SketchGen2 performs well even when starting with only

a single test case. Therefore, a user can feasible utilize SketchGen2

to effectively sketch a model by creating only one test case.

4.3 RQ2: Expression Generation Efficacy

The author’s motivation is to use SketchGen2 to generate RexGen’s

Dynamic Pruning list, which is an optimal list to use for sketching

since every expression is non-equivalent up to a given scope. To ex-

plore the efficacy of SketchGen2’s expression generation capabilities,

Table 3 shows the performance of the different expression gener-

ation techniques and their application to sketching Alloy models.

The columnModel shows the model under evaluation. The Expres-

sion Generation columns show information related to expression

generation: Strat conveys the generation strategy, #Expr shows

the number of expressions generated and Time shows the runtime

of the expression generation technique for the appropriate prob-

lem in milliseconds. In our experiments, we generate expressions

up to the minimum cost needed to sketch our oracle solution. For

deadlock, which has two different expression holes, the numbers

are reported in pairs in the table. The remainder of the columns

outline the sketch environment. Column #Holes shows the number

of holes in the sketch, column Space shows the size of the search

space (number of fragments combinations for all holes), and the

columns #Prim, #Cls and, Time show the number of primary vari-

ables, clauses, and solving time in milliseconds for the meta-model

that solves the sketch, respectively. Lastly, column Total depicts

the total runtime, including both the expression generation time

and the sketching time. Models with (⊥) timed out trying to solve

the sketch, meaning the models require more than 30 minutes to

sketch. All models that timed out did so when generating the CNF

representation for the SAT problem, resulting in no information

about the size of the meta-model. The test suite used to sketch the

models is generated by SketchGen2 using the Start 5 configuration.

To evaluate the tradeoffs between SketchGen2’s expression gen-

eration strategy and RexGen’s Static Pruning and Dynamic Pruning

strategies, the authors focus on the columns under the Expression

Generation header. The design of SketchGen2 targets two main

expression generation goals: producing the same list as Dynamic

Pruning while achieving this list more efficiently. The results in

Table 3 demonstrate how SketchGen2 meets both of these goals. In

terms of the size of the expressions generated, SketchGen2 generates

on average 2.9× fewer expressions than Static Pruning and does

generates the same number of expressions as Dynamic Pruning.

For remove, SketchGen2 see its largest reduction in number of

expressions, generating 6.5× fewer expressions than Static Pruning.

While Static Pruning generates more expressions, because the

pruning is only based on known equivalence rules applied during

formation of expressions, Static Pruning is efficient: all models

generate expressions in less than a second. In contrast, Dynamic

Pruning makes numerous SAT calls to prune expressions and takes

longer: Dynamic Pruning times out trying to generate expressions

for both btree and remove and takes 2.73 minutes to generate

expressions for contains. In comparison, while SketchGen2 does

not finish nearly as fast as Static Pruning, SketchGen2 does achieve

a speedup over Dynamic Pruning, as desired. On average, excluding

btree and remove which timed out, SketchGen2 is 10.7× faster

than Dynamic Pruning and unlike Dynamic Pruning, SketchGen2

does complete both btree and remove. For contains, which took

Dynamic Pruning the longest, SketchGen2 runs 2.4 minutes faster,

which is a 9.5× decrease in runtime. In addition, for dll, SketchGen2

64

FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA A. Jovanovic and A. Sullivan

Table 3: ASketch performance with different expression generation techniques. Times are in ms. ⊥ indicates timeout (>30 min).

Model
Expression Generation

#Holes Space
Sketching

Total
Strat #Expr Time #Prim #Cls Time

bempl

Static 131 49

3

68644 681 3.1e5 5034 5083

Dynamic 51 5226
10404 521 1.3e5 2016

7242

SketchGen2 51 974 2990

btree

Static 3473 333

6

2.7e12 - - ⊥ ⊥

Dynamic - ⊥ - - - - -

SketchGen2 1637 227267 2.8e11 - - ⊥ ⊥

contains

Static 1305 138

3

6.8e6 - - ⊥ ⊥

Dynamic 238 163891
2.3e5 1426 1.0e6 94113

258004

SketchGen2 238 17283 111396

deadlock

Static (17;115) (25;52)

6

2.8e5 321 2.7e5 10684 10761

Dynamic (11;29) (587;5375)
45936 229 62773 2851

8813

SketchGen2 (11;29) (340;1831) 4682

dll

Static 182 66

5

7.2e7 930 1.1e6 85064 85130

Dynamic 139 86650
3.4e7 810 8.6e5 37473

124123

SketchGen2 139 5599 43072

fsm

Static 297 79

4

1.1e6 930 1.5e6 254270 254349

Dynamic 150 51504
2.7e5 636 7.3e5 48752

100256

SketchGen2 150 5620 54372

grade

Static 182 66

6

1.7e10 1288 8.8e5 84413 84479

Dynamic 64 5340
2.7e8 816 2.3e5 7002

12342

SketchGen2 64 1356 8358

graph

Static 169 59

5

1.1e6 433 3.7e5 22889 22948

Dynamic 102 13759
3.7e5 297 2.0e5 7319

21150

SketchGen2 102 965 8897

remove

Static 5746 965

4

5.7e11 - - ⊥ ⊥

Dynamic - ⊥
2.0e9 - - ⊥

⊥

SketchGen2 876 235759 ⊥

sll

Static 214 70

5

2.2e6 598 5.6e5 145388 145458

Dynamic 107 34203
5.5e5 348 2.7e5 9001

43204

SketchGen2 107 4156 13157

achieves its largest magnitude speed up over Dynamic Pruning of

47.3×, which translates to a speed up of 81.0 seconds.

Overall, Static Pruning is runtime efficient; however, it produces

notably larger lists compared to the other strategies.WhileDynamic

Pruning has a large overhead, SketchGen2 successfully generates

the same expressions with a significantly shorter runtime.

4.4 RQ3: Sketch Efficacy

While the results in Section 4.3 show that SketchGen2 is preferable

to Dynamic Pruning, this section evaluates whether the tradeoff

regarding size and time between SketchGen2 and Static Pruning

is worthwhile when sketching models. Therefore, to evaluate the

efficacy of utilizing the different expression generation strategies to

sketch models, the authors focus on the columns under the Sketch-

ing header in Table 3. Since Dynamic Pruning and SketchGen2 use

the same set of expressions, their sketching details are reported

together, with the total time (column Total) being the difference.

SketchGen2’s reduction in the number of expressions generated

has a clear impact in reducing the size of the search space of candi-

date models. ASketch’s search space when using SketchGen2 is on

average 53.5× smaller than when using Static Pruning, with remove

and grade seeing the largest reduction at 282.2× and 261.0× respec-

tively. This large magnintude reductions in search space highlight

how quickly expression holes can inflate the size of the search space.

Consider remove which has the largest reduction in search space.

The sketch for remove includes 3 expression holes. Static Pruning

creates 5,746 different expressions to fill each of the 3 holes while

SketchGen2 only creates 876 expressions. Even for the model with

the smallest reduction in search space, dll, reducing the number of

expressions from 182 to 139 across the 3 expression holes in dll’s

sketch still reduces the search space by 2.1×, which, in turn, results

in a 2.3× reduction in runtime for ASketch.

As seen with dll, given the reduction in the size of the search

space produced by SketchGen2, we expect that using SketchGen2’s

expression list would also results in improved runtime performance

for ASketch, which is supported by our results. Excluding models

65

Towards Automated Input Generation for Sketching Alloy Models FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA

𝑇 5 𝑇 6 𝑇 7 𝑇 8

L0

N1N0 N2

header

link link

L0

N0 N1

link

L0

N0 N1 N2

header

link

link link

L0

N0 N1

header

link

valid valid invalid valid

𝑇 9 𝑇 10 𝑇 11

L0

N0 N1 N2

header

link

link link

L0

N0 N1 N2

link

link

L0

N1N0 N2

header

link

link

link

invalid valid invalid

Figure 3: The 7 test cases generated by SketchGen2 after starting with the five tests in Figure 2.

that time out, ASketch finds a solution to the sketch on average 6.5×

faster when using SketchGen2’s rather than using Static Pruning.

Models sll and grade see the largest speed up at 16.2× and 12.1×

respectively. Despite reducing the search space, the sketch prob-

lems for btree and remove remain too large to sketch within their

timeout bounds of 30 minutes. However, SketchGen2’s smaller ex-

pression list for contains does result in ASketch finding a solution

in 111 seconds, compared to timing out with Static Pruning.

While running ASketchwith SketchGen2 instead of Static Pruning

results in better performance, SketchGen2 does have a longer ex-

pression generation time. As a result, it is important to consider the

total overall runtime, depicted in column Total. For the models that

do not time out, the overall time is 4.7× faster utilizing SketchGen2

over Static Pruning. Again, models sll and grade see the largest

speed up at 11.1× and 10.5× respectively. The minimum speed up by

SketchGen2 is 1.7×, which occurs for the bempl model. Therefore,

when sketching Alloy models, SketchGen2’s smaller list of expres-

sions, which makes the search space more tractable, outweighs its

longer generation time in comparison to Static Pruning.

4.5 RQ4: Test Suite Quality

To consider the quality of the generated test suites, the authors

check whether the solutions found using these test suites were

correct or plausible. We use the Analyzer to determine equivalence

between the solutions found by ASketch and the oracle formulas.

For example, below is the check command for the sll model:

check {

all n: Node | n in List.header.^link => n !in n.link.^link

<=> all n: Node | n in List.header.*link => n !in n.^link

} for 3

For all the models used in our evaluation, we find that all solutions

foundwhen runningASketch for the results in Table 3 are equivalent

to the respective oracle solutions.

Furthermore, the authors manually inspect the generated test

suites to determine if these test cases are valuable for sketching.

Prior work [38] has shown that there are two important charac-

teristics for a sketching-oriented test suite: (1) the tests should

exercise high formula-level coverage of the final formula, which

helps mitigate concerns about plausible solutions, and (2) each

test case should be able to eliminate unique candidate models in

comparison to the rest of the test suite, which helps improve the

runtime. Figure 3 shows all of the test cases generated by the Start

5 configuration for the singly-linked list model. To achieve high

coverage, it is important for the test suite to not only be comprised

on both invalid and valid tests, but to also explore all the different

ways that valid and invalid behavior can occur. For the tests in

Figure 3, we can see that of the tests depicting invalid list, we are

presented with lists that are invalid due to: (1) a self loop at the start

of the list (𝑇7), (2) two nodes pointing directly back to each other
(𝑇 11), and (3) a larger, more indirect cycle (𝑇 9). For valid behavior,
we can see lists that explore (1) correctly connected nodes (𝑇8),
(2) nodes with cyclic behavior but are disconnected from the list

(𝑇 6), (3) empty lists and disconnected nodes (𝑇 10) and (4) lists with
no cycles and disconnected nodes (𝑇 5).
The creation of tests that do not contribute any unique infor-

mation for eliminating candidate models can impact ASketch’s per-

formance by both increasing the size of the meta-model as well as

adding redundant constraints that bloat the satisfiability problem.

Unfortunately, our inspection revealed the test suites created by

SketchGen2 are not guaranteed to be minimal for sketching pur-

poses. To illustrate, consider the following two tests 𝑇1 (Figure 2)
and 𝑇 8 (Figure 3). Conceptually, test 𝑇 8’s valuation is an extension
of 𝑇1’s valuation. In terms of representing valid behavior of the
Acyclic predicate, both tests represent a scenario in which all the

nodes are in the list and there is no cycle. Rather than having both

tests, it would be more desirable to just have 𝑇8. This behavior

66

FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA A. Jovanovic and A. Sullivan

occurs again with 𝑇2 and 𝑇7, which both depict invalid behavior
where a node in the list has a self loop, and with𝑇 3 and𝑇 11, which
both depict invalid behavior where two nodes link directly back to

each other. If we rerun SketchGen2 with 𝑇 8, 𝑇 7, and 𝑇 11 in place of
𝑇 1, 𝑇 2, and 𝑇 3, then we do not generate 𝑇 1, 𝑇 2, and 𝑇 3.

While the presence of all six tests will not cause an issue in terms

of the correctness of the sketch, the presence of these tests highlight

that SketchGen2’s resulting test suite can be improved. First, many

of the extended scenarios are built out of our manually created

tests used to initiate SketchGen2. Therefore, we note the importance

of generating larger individual tests before running SketchGen2.

In addition, SketchGen2 can be extended to detect if a test case

is an extension of a previous test, and look to see if the smaller

test case can be safely removed. Second, SketchGen2 currently uses

the first counterexample produced that explicitly distinguishes be-

tween two non-equivalent expressions. However, SketchGen2 does

not currently place any other constraints on this counterexample.

One avenue of future work is to attempt to generate more valu-

able counterexamples by asking Alloy to find either a maximal

counterexample or to generate a counterexample that explicitly

distinguishes between multiple non-equivalent expressions, rather

than distinguishing between two non-equivalent expressions.

5 THREATS TO VALIDITY

There exists a few threats to the validity for the results. For the

SketchGen2 configurations, the test cases chosen are from previ-

ous work sketching Alloy models. Therefore, these test cases may

be particularly well suited for SketchGen2, as these tests were de-

signed to evaluate ASketch in the past. Therefore, different starting

test suite may result in a different performance for SketchGen2.

However, our evaluation does highlight that an end user should

target creating a small number of diverse and intricate tests for

their starting test suite to help improve SketchGen2’s performance

and its application to ASketch. For expression generation, RexGen

has several parameters to specify the upper bound on the size of

expressions to generate. For the evaluation models, the authors use

the minimum size of expressions needed to create the known oracle

solution, which ensures that each sketch is solvable. In practice, the

minimum size needed to generate the valid expression is not known

in advance. Lastly, the models are benchmark models used to eval-

uate prior sketching work and largely fall into two categories: data

structures and protocols. The authors’ results may not generalize

to other types of system models. However, these models have fre-

quently been used to evaluate new Alloy techniques [25, 26, 40, 46].

6 RELATEDWORK

Input Generation for Constraint Languages. SketchGen2 is at

its core an input generation technique for Alloy that automatically

creates AUnit test cases that need to be labeled valid or invalid by

an oracle. Prior work has addressed automated input generation

for Alloy, including coverage-based generation and mutation-based

generation [40]. Testing constraint languages outside of Alloy has

been addressed in previous work. For example, a test framework

was built for the constraint language OPL which focuses on using

an oracle model to derive tests that look for differences in behavior

based on conformity properties and provides guidance for fault lo-

calization [20, 21]. Moreover, previous work introduced a reduction

of testing UML models to satisfiability checking by encoding the

model and a property of interest, and using SAT [33]. These efforts

have largely focuses on creating testing environments and are not

applied or created for a synthesis environment.

Expression Generation.When generating expressions for pro-

gramming languages, there quickly arises a need to prune the search

space, as the number of expressions often becomes intractable, pre-

venting the use of these expressions to other applications, such

as synthesis. Pruning techniques include determining the indistin-

guishability of expressions modulo a set of inputs [2, 44] and partial

evaluation of incomplete expressions [7]. Additionally, knowledge

about operator properties has also been used to explore equivalent

expressions, either after expression generation [7] or by applying

an automated transformation to the grammar [18]. SketchGen2 does

not add to the types of pruning for Alloy expressions, but instead

aims to improve the efficiency of how Alloy expressions can be

pruned through a novel combination of Modulo-Instance Pruning

and Dynamic Pruning.

Program Sketching. The aim of SketchGen2 is to provide auto-

mated input generation for sketching. Program sketching [1, 16, 31,

32, 34–37] is a form of program synthesis, which is a mature yet

active research topic [3, 6–8, 12, 17, 19, 22, 27, 31]. Researchers have

proposed program synthesis techniques for a number of languages,

including synthesis of logic programs, e.g., using inductive syn-

thesis based on positive and negative examples [5]. SketchGen2 is

designed to work with ASketch, which uses unit tests to outline the

expected behavior. Previous work on program synthesis has also

used user provided tests to synthesize imperative code. SyPet [6]

uses tests and Petri nets to synthesize0 sequences of method invoca-

tions for complex APIs. Test-Driven Synthesis builds a C# program

such that it satisfies all tests [28]. While SketchGen2 is not a syn-

thesis technique, SketchGen2 is designed to generate test cases that

are valuable for sketching, as each test distinguishes between at

least two expressions which are non-equivalent.

7 CONCLUSION

While software models are a valuable resource to create more re-

liable software systems, models are notoriously difficult to write

correctly. ASketch introduces a framework for partial synthesis of

Alloy models through sketching. Unfortunately, ASketch still re-

quires users to write a valuable regular expression and a robust test

suite in order to generate an Alloy model that matches the user’s

expectation. This paper introduces SketchGen2, which automates a

majority of the input generation needed for ASketch. Experimental

results reveal that SketchGen2 is able to efficiently generate a list of

expressions for synthesis while strengthening the user’s test suite

to handle the broad list of expressions produced by SketchGen2.

In particular, we show that the starting with a small collection of

strong tests makes SketchGen2 efficient and results in a good test

suite for use by ASketch.

ACKNOWLEDGMENTS

The work is partially supported by the National Science Foundation

under Grant No. CCF-2123341.

67

Towards Automated Input Generation for Sketching Alloy Models FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund

Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In FMCAD.

[2] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumera-
tive Program Synthesis via Divide and Conquer. In TACAS.

[3] Rastislav Bodík and Barbara Jobstmann. 2013. Algorithmic program synthesis:
Introduction. STTT (2013).

[4] CheckMate GitHub. 2019. https://github.com/ctrippel/checkmate. (2019).
[5] Yves Deville and Kung-Kiu Lau. 1994. Logic program synthesis. The Journal of

Logic Programming 19 (1994).
[6] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017.

Component-based Synthesis for Complex APIs. In POPL.
[7] John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure

transformations from input-output examples. In PLDI.
[8] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik

Sen. 2014. CodeHint: Dynamic and Interactive Synthesis of Code Snippets. In
ICSE.

[9] Juan P. Galeotti, Nicolás Rosner, Carlos Gustavo López Pombo, and Marcelo F.
Frias. 2013. TACO: Efficient SAT-Based Bounded Verification Using Symmetry
Breaking and Tight Bounds. IEEE TSE 39, 9 (2013).

[10] Juan P. Galeotti, Nicolás Rosner, Carlos G. López Pombo, and Marcelo F. Frias.
2013. TACO: Efficient SAT-Based Bounded Verification Using Symmetry Breaking
and Tight Bounds. TSE (2013).

[11] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. 2011.
Specification-Based Program Repair Using SAT. In TACAS.

[12] Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. 2011. Interactive Synthesis of
Code Snippets. In CAV (Snowbird, UT).

[13] Daniel Jackson. 2002. Alloy: A Lightweight Object Modelling Notation. TSE
(2002).

[14] Daniel Jackson. 2006. Software Abstractions: Logic, Language, and Analysis. The
MIT Press.

[15] Daniel Jackson and Mandana Vaziri. 2000. Finding Bugs with a Constraint Solver.
In ISSTA.

[16] Jinseong Jeon, Xiaokang Qiu, Jeffrey S. Foster, and Armando Solar-Lezama. 2015.
JSketch: Sketching for Java. In FSE.

[17] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013. Synthesis
Modulo Recursive Functions. In OOPSLA.

[18] Manos Koukoutos, Etienne Kneuss, and Viktor Kuncak. 2016. An Update on
Deductive Synthesis and Repair in the Leon Tool. In SYNT Workshop.

[19] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. 2010. Complete
Functional Synthesis. SIGPLAN Not. 45, 6 (2010).

[20] N. Lazaar, A. Gotlieb, and Y. Lebbah. 2010. Fault Localization in Constraint
Programs. In 2010 22nd IEEE International Conference on Tools with Artificial
Intelligence, Vol. 1. 61–67. https://doi.org/10.1109/ICTAI.2010.18

[21] Nadjib Lazaar, Arnaud Gotlieb, and Yahia Lebbah. 2010. Principles and Practice
of Constraint Programming – CP 2010: 16th International Conference, CP 2010,
St. Andrews, Scotland, September 6-10, 2010. Proceedings. Chapter On Testing
Constraint Programs.

[22] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid
Mining: Helping to Navigate the API Jungle. PLDI (2005).

[23] Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A Novel Framework for
Automated Testing of Java Programs. In ASE.

[24] Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel Jackson. 2015.
Alloy*: A General-purpose Higher-order Relational Constraint Solver. In Proc.
37th International Conference on Software Engineering - Volume 1.

[25] Tim Nelson, Natasha Danas, Daniel J. Dougherty, and Shriram Krishnamurthi.
2017. The Power of "Why" and "Why Not": Enriching Scenario Exploration with
Provenance. In FSE.

[26] Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, and Shriram
Krishnamurthi. 2013. Aluminum: Principled Scenario Exploration Through
Minimality. In ICSE.

[27] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed
Program Synthesis. SIGPLAN Not. 50, 6 (2015).

[28] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. 2014. Test-
driven Synthesis. PLDI (2014).

[29] Sorawee Porncharoenwase, Tim Nelson, and Shriram Krishnamurthi. 2018. Com-
poSAT: Specification-Guided Coverage for Model Finding. In FM.

[30] Hesam Samimi, Ei Darli Aung, and Todd D. Millstein. 2010. Falling Back on
Executable Specifications. In ECOOP.

[31] Rishabh Singh and Sumit Gulwani. 2015. Predicting a Correct Program in Pro-
gramming by Example. In CAV.

[32] Rishabh Singh and Armando Solar-Lezama. 2011. Synthesizing Data Structure
Manipulations from Storyboards. In FSE.

[33] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler. 2010. Verifying
UML/OCL models using Boolean satisfiability. In Design, Automation Test in
Europe Conference Exhibition.

[34] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph. D. Dissertation.
University of California, Berkeley.

[35] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik, Vijay
Saraswat, and Sanjit Seshia. 2007. Sketching Stencils. SIGPLAN Not. 42, 6 (June
2007), 167–178.

[36] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. 2008.
Sketching Concurrent Data Structures. In PLDI.

[37] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. In ASPLOS.

[38] Allison Sullivan. 2017. Automated Testing and Sketching of Alloy Models. Ph. D.
Dissertation. University of Texas at Austin.

[39] Allison Sullivan, Kaiyuan Wang, Sarfraz Khurshid, and Darko Marinov. 2017.
Evaluating State Modeling Techniques in Alloy. In SQAMIA.

[40] Allison Sullivan, Kaiyuan Wang, Razieh Nokhbeh Zaeem, and Sarfraz Khurshid.
2017. Automated Test Generation and Mutation Testing for Alloy. In ICST.

[41] Alloy Team. [n. d.]. http://alloy.mit.edu/alloy/documentation/alloy4-grammar.
txt.

[42] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. CheckMate:
Automated Synthesis of Hardware Exploits and Security Litmus Tests. InMICRO.

[43] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2019. Security Ver-
ification via Automatic Hardware-Aware Exploit Synthesis: The CheckMate
Approach. IEEE Micro (2019).

[44] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,
Milo M. K. Martin, and Rajeev Alur. 2013. TRANSIT: Specifying protocols with
concolic snippets. In PLDI.

[45] Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. 2018. ASketch: A
Sketching Framework for Alloy. In Proceedings of the 2018 26th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE Demo). 916–919.
https://doi.org/10.1145/3236024.3264594

[46] Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. 2020. Fault Localization
for Declarative Models in Alloy. In ISSRE.

[47] Kaiyuan Wang, Allison Sullivan, Manos Koukoutos, Darko Marinov, and Sar-
fraz Khurshid. 2018. Systematic Generation of Non-equivalent Expressions for
Relational Algebra. In International ABZ Conference ASM, Alloy, B, TLA, VDM, Z.

[48] Kaiyuan Wang, Allison Sullivan, Darko Marinov, and Sarfraz Khurshid. 2018.
Solver-Based Sketching of Alloy Models Using Test Valuations. In International
ABZ Conference ASM, Alloy, B, TLA, VDM, Z.

[49] Razieh Nokhbeh Zaeem and Sarfraz Khurshid. 2010. Contract-Based Data Struc-
ture Repair Using Alloy. In ECOOP.

[50] Pamela Zave. 2012. Using Lightweight Modeling to Understand Chord. SIGCOMM
Comput. Commun. Rev. 42, 2 (2012), 49–57.

68

