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ABSTRACT
Prolog is a declarative, first-order logic that has been used in a vari-
ety of domains to implement heavily rules-based systems. However,
it is challenging to write a Prolog program correctly. Fortunately,
the SWI-Prolog environment supports a unit testing framework,
plunit, which enables developers to systematically check for cor-
rectness. However, knowing a program is faulty is just the first
step. The developer then needs to fix the program which means
the developer needs to determine what part of the program is
faulty. ProFL is a fault localization tool that adapts imperative-
based fault localization techniques to Prolog’s declarative environ-
ment. ProFL takes as input a faulty Prolog program and a plunit
test suite. Then, ProFL performs fault localization and returns a
list of suspicious program clauses to the user. Our toolset encom-
passes two different techniques: ProFLs , a spectrum-based tech-
nique, and ProFLm , a mutation-based technique. This paper de-
scribes our Python implementation of ProFL, which is a command-
line tool, released as an open-source project on GitHub (https:
//github.com/geoorge1d127/ProFL). Our experimental results show
ProFL is accurate at localizing faults in our benchmark programs.
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1 INTRODUCTION
Declarative programming languages enable developers to imple-
ment rule-based systems, e.g. fault tolerant software defined net-
work layers [10], and reason over the designs of systems, e.g. dis-
proving the Chord ring-maintenance protocol [14]. Declarative
languages express the logic of a system’s behavior without giving
any control flow. Then, the execution determines how to achieve
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the desired behavior. While a number of declarative languages
exist [4, 6, 9], the broad adoption of these languages is often hin-
dered for two key reasons. First, declarative languages have steep
learning curves since their execution environment is inherently
different than commonly used imperative languages, e.g. Java and
C++, which use statements to sequentially change a program’s state
into the desired behavior. Second, declarative languages often lack
robust tool support for test automation frameworks.

Prolog is a first-order logic based declarative language that has
seen a wave of new users due to its applicability to rising fields
such as machine learning [2]. While Prolog is viewed as one of
the go to languages for artificial intelligence systems, several stud-
ies have shown that Prolog is difficult for many programmers to
learn [11, 13]. Fortunately, SWI-Prolog [12] contains a unit testing
framework, plunit. Besides support for unit testing, plunit is ac-
tively developing frameworks to automatically generate tests and
calculate coverage, which help developers reveal bugs. However,
just finding bugs is not sufficient. The user needs to be able to fix the
bug. Unfortunately, locating the faulty portion of a Prolog program
is difficult. Imperative languages’ sequential execution allows devel-
opers to step over changes to a program’s state to locate where the
execution goes wrong. This is not possible in Prolog, which has no
notion of control flow. Furthermore, Prolog programs can have nu-
merous interdependent clauses spanning multiple non-contiguous
lines, making the process of locating bugs time consuming.

This paper describes our Python implementation of ProFL, a
toolset to perform automated fault localization for Prolog. ProFL
is a command line tool that we release as an open-source project
(https://github.com/geoorge1d127/ProFL). ProFL takes as input a
faulty Prolog program and a corresponding plunit test suite. ProFL
then provides two different types of fault localization techniques:
spectrum-based techniques, which are based on well-established
fault localization techniques for imperative languages [1, 5, 8], and a
mutation-based technique, which is based on a recent advancement
in fault localization [7]. Lastly, ProFL visualizes the results back to
the user to help steam-line debugging.

2 BACKGROUND
ProFL integrates with SWI-Prolog, which is currently the most
commonly used compilation environment for Prolog programs [12].
Figure 1 depicts a real world faulty Prolog program1. Prolog pro-
grams are a collection of clauses that create a knowledge base that
can be queried and tested. Clauses can either be a fact or a rule and
are always terminated by a period. Lines 1 - 6 depict facts, which
use a predicate expression to make a declarative statement about
the problem domain. Line 8 depicts a rule, which uses a predicate
expression to describe relationships among facts. A rule “A :- B”
can read as “A if B” where “:-” represents logical implication. Thus,
1https://stackoverflow.com/questions/49353041/prolog-query-satisfiable-but-
returns-false
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1. male(william). /*william is male.*/
2. male(harry).
3. parent(william, diana). /*parent(x,y) - the parent of x is y.*/
4. parent(william, charles).
5. parent(harry, diana).
6. parent(harry, charles).
7. /*brother(X,Y) - the brother of X is Y.*/
8. brother(X,Y) :- X\=Y, parent(X,A), parent(Y,A), male(Y).

Figure 1: Faulty Family Tree Prolog Program

rules express ways to derive or compute new facts. On line 8, the
left-hand side of the rule defines the predicate brother which takes
as arguments two variables X and Y. The right-hand side of the rule
uses negation (\), unity (=), conjunction (,) and predicates (parent,
male) to express that Y is X’s brother if all of the following holds:
(1) X cannot unify to Y, (2) there is a variable A that is a parent to
both X and Y, and (3) Y is male.

Rather than sequentially executing statements, Prolog’s exe-
cution environment tries to prove that a query, a user-specified
sequence of predicates, is true using the defined facts and rules.
plunit, Prolog’s unit testing library, defines a unit test to be Prolog
queries that are expected to be true for a given program. Below is a
set of tests which reveal the fault on line 8 in Figure 1:
1. :- begin_tests(family).
2. :- include(family).
3. test(test1) :- brother(william,harry). /*Test Passes.*/
4. test(test2) :- brother(william,X). /*Test Fails.*/
5. :- end_tests(family).

The error arises because the negation of unity (“\=”) is used as
if it asserts the two variables must be different, which is not how
the constraint gets interpreted. When Prolog resolves “X \= Y,” the
execution environment asks “Can X and Y ever be unified? If so,
fail.” This incorrect usage does not impact test1’s execution as
both arguments to brother are bound to different constants and
therefore cannot unify. In contrast, for test2, one of the arguments
is a constant (william) and the other is an unbound variable (X).
Since none of the clauses prevent X from being bound to william,
the two can unify resulting in test2 failing. What the user really
wanted to constrain is “in any solution, X and Y must be different.”
In Prolog, this can be achieved by making the following change:
8. brother(X,Y) :- dif(X,Y), parent(X,A), parent(Y,A), male(Y).

The predicate dif is a constraint that is true if and only if X and
Y are different terms.

3 TECHNIQUE
ProFL adapts well-studied imperative fault localization techniques
to Prolog’s declarative environment. Figure 2 gives an overview
of ProFL’s components. ProFL takes as input (1) a faulty Prolog
program and (2) a plunit test suite. Then, depending on the user’s
selection, ProFL will run ProFLs , which performs spectrum-based
fault localization (SPFL), and/or ProFLm , which performs mutation-
based fault localization (MBFL). As output, for each fault localization
technique run, ProFL displays the likely faulty clauses from most to
least suspicious in separate tables. We next describe how the four
main components of ProFL work.

3.1 Coverage Engine
Both SBFL and MBFL rely on accurate coverage information to be
effective. In Prolog’s execution, all clauses form one knowledge

Figure 2: ProFL Component Diagram

base that is leveraged to try and prove a query true. To provide
effective localization, we want to consider a clause covered by
a test if that clause is actively used to resolve the test’s query.
Therefore, we want something analogous to statement coverage for
imperative programs. Unfortunately, plunit’s coverage framework
is under development and does not provide the fine-grained, clause
level data ProFL needs. Therefore, ProFL implements a recently
developed coverage technique which utilizes mutants to calculate
clause coverage [3]. To start, the mutation engine (Section 3.2) is
invoked to produce all valid mutants of the program. Then, the
coverage engine performs a streamlined version of mutation testing.
For every mutantm, the test suite is executed. If a test t killsm, then
t’s pass/fail result changed compared to the original program. Since
m is a mutation of some clause c, we conclude t covers c. As an
optimization, once the coverage engine has detected t covers c, t is
not executed for any remaining mutants of c. Using this process, the
coverage engine builds a map from every clause to the test case(s)
that cover it. This map is then passed as input to both ProFLs and
ProFLm . The coverage engine is intentionally kept modular to allow
for the integration of other suitable coverage techniques.

3.2 Mutation Engine
Our mutation engine implements the following mutation operators:
removing predicates, interchanging disjunction and conjunction,
changing atoms or variables to anonymous variables, and inter-
changing arithmetic operators. When mutating a Prolog program,
it is possible to accidentally create non-deterministic predicates
which leads to an infinite loop during Prolog’s execution. Therefore,
we follow the results from a recent empirical study and avoid two
types of mutants, clause reversal and cut transformation, known to
create non-deterministic predicates [3]. For the coverage engine,
the mutation engine generates all possible non-equivalent mutants
for each clause in the program but does not control execution. For
ProFLm , the mutation engine generates all possible non-equivalent
mutants for each clause covered by some failing test. Then, the
mutation engine executes each mutantm against the original test
suite. As it executes, the mutation engine builds a mapping fromm
to the tests that passm and the tests that failm. Unlike the coverage
engine, the mutation engine always executes the entire test suite
against each mutant, as ProFLm needs detailed information about
how test results change from the original to the mutated program.

3.3 ProFLs : Spectrum-Based Fault Localization
ProFL allows users to perform traditional SBFL [1, 5, 8]. To evalu-
ate how likely a program statement is to be faulty, SBFL utilizes
test cases’ pass/fail results and information about what portions of
the program those test cases execute to calculate a suspiciousness

562



ProFL: A Fault Localization Framework for Prolog ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Name Formula

tarantula [5]
f ailed (c )

total f ailed
f ailed (c )

total f ailed +
passed (c )

totalpassed

ochiai [1] f ailed (c )
√
total f ailed×(f ailed (c )+passed (c ))

op2 [8] f ailed (c) − passed (c )
totalpassed+1

totalfailed: total number of test cases that failed.
totalpassed: total number of test cases that pass.
failed(c): number of failed test cases that cover c.
passed(c): number of passed test cases that cover c.

Figure 3: ProFLs Supported Suspiciousness Formulas

score for each statement. The higher a statement’s suspiciousness
score, the more likely the statement is to be faulty. To perform
SBFL, ProFLs uses the initial test results and the coverage mapping
from Section 3.1 to calculate the suspiciousness score of each clause
using the three formulas outlined in Figure 3. These three formulas
are commonly used in imperative SBFL techniques. totalfailed and
totalpassed are the number of failed and passed test cases for the
Prolog program. failed(c) and passed(c) are the number of failed and
passed tests that utilize clause c, which is determined by our cover-
age framework. In general, these formulas are designed to assign
a higher suspiciousness score to a clause that is covered by more
failing tests and fewer, if any, passing tests. After all suspiciousness
scores are calculated, ProFLs creates a ranked list of clauses from
most suspicious to least, which gets displayed to the end user.

3.4 ProFLm : Mutation-Based Fault Localization
MBFL techniques rely on tactically altering program statements and
seeing how these changes affect the test results [7]. If a mutation
causes a failing test to pass, then themutated location becomesmore
suspicious. However, if a mutation causes a passing test to fail, then
the mutated location becomes less suspicious. To perform MBFL,
ProFLm extracts the clauses that are covered by failing tests from
the coverage map in Section 3.1. Then, ProFLm uses the mutation
engine from Section 3.2 to get a map between mutants of these
clauses and which tests pass and fail each mutant. Rather than
using the mutation testing information to build a mutation score
for the test suite, ProFLm uses the information to help calculate a
suspiciousness score for each clause using the formula in Figure 4.
Within the summation, the first term correlates to the likelihood
of c being faulty, as the term increases when mutating c causes a
failing test to pass. The second term correlates to the likelihood of
c not being faulty, as the term decreases when mutating c causes
a passing test to fail. The weight α is based on the number of test
result changes and is used to help balance the two terms, since
breaking a program is easier than correcting a program. Similar to
ProFLs , ProFLm calculates a suspiciousness score for each clause
and then sends a ranked list of suspicious clauses to be formatted
and displayed to the end user.

4 USAGE
In this section, we describe how users can invoke ProFL. More
details can be found on the ProFL GitHub homepage.

Muse Formula [7]

1
|mut (c) |

∑
m ϵ mut (c )

(
fP (c) ∩ pm

fP
− α ∗

pP (c) ∩ fm
pP

)

where α =
f 2p

|mut (P ) | · |fP |
·
|mut (P ) | · |pP |

p2f

fP (c): set of test cases that cover c and fail P.
pP (c): set of test cases that cover c and pass P.
mut(c): set of all mutants of P that mutates c and change a test result.
fm : set of failing test for mutant m.
pm : set of passing test for mutant m.
mut(P): number of mutants created from program P
f2p: number of tests that change from failing to passing.
p2f : number of tests that change from passing to failing.

Figure 4: ProFLm Supported Suspiciousness Formula

To localize a fault, run: python ProFL.py -p <arg> -t <arg>

-f <arg> -v <arg> [-s <arg>] [-r <arg>] [-c <arg>] or python
ProFL.py --program-path <arg> --test-suite <arg> --fl-technique

<arg> --view <arg> [--suspicious-formula <arg>] [--result-path

<arg>] [--coverage-path <arg>]

• "-p,--program-path": This argument is required. Pass the file
name of the faulty Prolog program.

• "-t,--test-suite": This argument is required. Pass the file name
of the plunit test suite.

• "-f,--fl-technique": This argument is required. Pass the fault
localization technique to use. The value should be "-spectrum",
"-mutation", or "-both".

• "-v,--view": This argument is required. Pass how much of the
ranked suspicious list to view. The value should be "-top1",
"-top5", "-top10", or "-all".

• "-s,--suspicious-formula": This argument is optional and is
used when the technique is "-spectrum" or "-both". Pass the sus-
piciousness formula for ProFLs to use. The value should be
"-tarantula", "-ochiai", or "-op2". If specifying more than one,
separate with a comma. If not specified, all three are used.

• "-r,--result-path": This argument is optional. Pass the path
to which you want to save the fault localization results. If not
specified, the results are only printed to the terminal.

• "-c,--coverage-path": This argument is optional. Pass the path
to which you want to save the coverage results.If not specified,
the coverage information is not saved.
The ProFL tool reports one table per suspiciousness formula

executed. Depending on the user’s selection, this table will display
the most suspicious clause, the top 5 suspicious clauses, the top 10
suspicious clauses, or all ranked clauses. For each suspicious clause
c, ProFL reports: (1) the number of test that c fails, (2) the number
of test that c passes, and (3) the suspiciousness score of c. The user
can also elect to save the fault localization and coverage results.

5 EVALUATION
Table 1 shows the 10 Prolog programs used to evaluate ProFL and
the corresponding performance of ProFL. These programs are incor-
rect submissions to Exercism’s Prolog exercises track2. Program
2https://exercism.io/tracks/prolog/exercises
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Table 1: ProFL Performance Results

Program Program Details Time (s) Ranking
# Pred # Cls # Tests ProFLs ProFLm Tarantula Ochiai Op2 Muse

anagram 6 7 18 83.2 89.9 1 1 1 1
binary 5 3 16 N/A N/A N/A N/A N/A N/A
complex_num 8 8 27 239.6 246.5 1 1 1 2
dominoes 5 7 12 39.8 69.0 1 1 1 2
grains 2 5 12 49.8 66.9 2 1 1 1
hamming 4 3 15 33.1 48.5 1 1 1 2
pascal_tri 6 6 8 23.1 30.3 1 1 2 6
queen_attack 5 5 13 68.3 80.9 1 1 1 2
space_age 3 10 8 23.0 32.2 9 9 9 1
triangle 2 6 19 84.4 143.9 1 1 1 2

is the name of the program: anagram determines which words
are anagrams of a given word, binary converts a binary number
to a decimal number, complex_num implements complex num-
bers, dominoes makes a chain of dominoes, grains calculates the
number of grains of wheat on a chessboard when the number on
each square doubles, hamming calculates the Hamming difference
between two DNA strands, pascal_tri computes Pascal’s triangle,
queen_attack determines if two queens can attack each other on a
chess board, space_age calculates how old someone is in terms of a
planet’s solar years, and triangle determines the type of a triangle.

The next three columns in Table 1 describe the size and complex-
ity of the programs. # Pred is the number of unique predicates, #
Cls is the number of clauses and # Tests is the size of the plunit
test suite. We use the test suites released by Exercism for each
exercise. The next two columns represent the runtime for ProFLs
and ProFLm respectively. The times are in seconds and captures
the time it takes to go from processing the input to displaying the
results to the user. The last four columns represents the ranking
given to the faulty clause by each suspiciousness formula support
by ProFL: Tarantula, Ochiai and Op2 for ProFLs and Muse for
ProFLm . The lower this value is, the better the fault localization
technique performed. A value of 1 means the faulty statement was
ranked as the most suspicious clause while a value of 6 means the
faulty clause was ranked as the 6th most suspicious clause.

For one program, binary, ProFL is unable to perform fault local-
ization as our technique got stuck in an infinite loop when mutating
the faulty statement during the initial coverage calculations. This
motivates our goal to incorporate additional coverage options in
future releases of the tool. For the remaining 9 models, the best
performing results are presented in green for both runtime and
ranking. Across all programs, ProFLs runs faster then ProFLm for
an average speed up of 1.4×. This is expected as ProFLm ’s suspi-
ciousness formula requires targeted mutation testing in addition to
the initial coverage results while ProFLs ’s suspiciousness formula
works just with the initial coverage results. For ProFLs , all three
suspiciousness formulas have comparable performance with Ochiai
marginally performing the best. In comparison, ProFLm ’s Muse
formula performs slightly worse than the ProFLs ’s formulas, often
ranking the faulty statement in an equal position (3 of 9) or one po-
sition lower (5 of 9). However, for space_age, ProFLm significantly
outperforms ProFLs . For this model, the faulty clause causes almost
all tests to fail, impeding ProFLs ’s performance. This highlights that

ProFLm can perform well in situations where ProFLs is unable to be
effective. Therefore, given that the same initial coverage informa-
tion can be re-used between ProFLs and ProFLm , user can increase
their confidence by running both techniques and leverage their
individual strengths, while incurring the modest overhead from
the additional mutation testing needed for ProFLm . Overall, these
results show ProFL can help locate faults and our two techniques
have complementary roles to each other.

6 CONCLUSION
This paper introduced the open-source ProFL tool for automated
fault localization of Prolog programs. ProFL provides command-line
options to automatically perform any combination of spectrum-
based or mutation-based fault localization. Given a faulty Prolog
program and a fault-revealing test suite, ProFL is able to report a list
of suspicious clauses for the user to investigate. Our experiments
show ProFL has a minor overhead and promising accuracy results.
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