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Abstract—Software models help improve the reliability of
software systems: models can convey requirements, and can
analyze design and implementation properties. A key strength
of Alloy, a commonly used modeling language, is the Alloy
Analyzer toolset. The Analyzer is an automated analysis engine
that searches for all valid instances, which are assignments to
the sets of the model such that all executed formulas hold, up
to a user-provided scope. Unfortunately, despite the Analyzer,
writing correct models remains a difficult and error-prone task.
To address this, a unit testing framework, AUnit, was created for
Alloy. Since then, several traditional imperative testing practices,
including mutation testing, fault localization and repair, have
been established for Alloy models. Prior work has introduced
the feasibility of these approaches and produced command line
prototype tools. This paper highlights the effort to translate these
research products into the Analyzer, the main model development
tool for Alloy, to produce one consolidated integrated develop-
ment environment that provides robust testing support.

Index Terms—Alloy, SAT Solver, Software Testing

I. INTRODUCTION

As software pervades our society and lives, and software

failures become increasingly costly, there is a growing need

to produce higher quality software at lower costs. To achieve

this, software developers can utilize bounded verification tech-

niques where key portions of the system’s design are modeled

in declarative logic and then automatically analyzed up to a

user-provided scope [3, 6, 12, 17, 33, 35, 44]. In addition

to catching subtle but often dangerous bugs that can arise in

designs, a precise model of a system’s design also enables:

architects to guarantee changes are safe before modifying the

implementation, stakeholders to remove ambiguity about the

system being built, and developers to produce better self-

diagnosing code [24]. However, leveraging software models

to catch early design bugs introduces a “chicken and egg”

problem: to gain the many benefits that come from having a

software model, the model itself needs to be correct. Unfortu-

nately, writing correct models is a difficult task, in part because

reasoning about the interaction between multiple formulas is

difficult to do manually.

Alloy is a popular declarative, first order modeling lan-

guage [13] that has been used to validate software designs

[4, 8, 18, 23, 41, 44], to test and debug code [9, 19], to

repair program states [27, 43] and to provide security analysis

of systems [3, 5, 34]. A key strength of Alloy is the ability

to develop models in the Analyzer, an instance enumeration

toolset powered by SAT solvers that lets users explore their

models by producing a collection of satisfying instances,

which are assignments to the sets and relations of the model

such that all executed formulas hold. At a conceptual level,

each instance depicts behavior currently allowed by the mod-

eled system. The SAT solver will then explore all possible

behavior, potentially revealing unintended restrictions (or lack

thereof) of the modeled system.

We created AUnit to address the need to have a systematic

method to check the correctness of Alloy models [32]. Prior

to AUnit, there was no formal notion of “testing” in the

Analyzer. As a result, experienced users would employ a

range of ad-hoc techniques, such as enumerating instances and

visually inspecting them for issues, that are time consuming

and error prone. AUnit’s key insight is that unit testing, the

most effective way to validate code, provides a blueprint on

how to validate models. In the context of Alloy’s declarative

execution, in which there is no notion of imperative control

flow and the SAT solver finds all satisfying scenarios in one

execution, AUnit defines: (1) what is a test case, (2) how is a

test case executed and its pass/fail outcome resolved and (3)

what are different types of coverage criteria.

To start providing native support for testing in the Analyzer,

we have previously extended the Analyzer to include support

for AUnit [30]. In addition, there are a number of testing

techniques which leverage AUnit: μAlloy is a mutation testing

framework which also provides automated test generation,

AlloyFL is a fault localization technique and ARepair is a

generate and validate automated repair technique. Outside

of AlloyFL, these techniques are deployed as standalone,

command-line prototype tools that are run outside of the

Analyzer by passing the location of an Alloy model as one of

the parameters to the tool. The results from these frameworks

are then printed to the command line terminal and sometimes

produce artifacts that are saved locally. Therefore, Alloy users

do not have access to one centralized integrated development

environment (IDE) in which they can actively benefit from

these enhancements to test and debug their Alloy models.

In this paper, we introduce the Analyzer Plus IDE, an inte-

grated development environment for Alloy that combines these

AUnit testing frameworks together to form one comprehensive

toolset. The benefit of this is two-fold. First, since the Analyzer

is the main development environment for Alloy, users will have

access to a wide range of debugging options without having

to change any behavior related to how they already develop
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1. sig Class { ext: lone Class }
2. one sig Object extends Class {}
3. pred AllExtObject() {
4. //Each class except Object is a sub-class of Object.
5; all c: Class - Object | c in c.*ext
6. }

1. val Test0 {
2. some disj Obj0: Object {
3. some disj Obj0, Cls0, Cls1: Class {
4. Object = Obj0
5. Class = Obj0 + Cls0 + Cls1
6. ext = Cls0->Cls1 + Cls1->Cls0
7. @cmd:{!AllExtObject[]}
8. }}}
9. @Test Test0: run {Test0}

Obj0

Cls0 Cls1
ext

(a) (b) (c)

Fig. 1. Faulty Java Class Diagram Model and Fault Revealing Test Case

Alloy models. Second, we are able to improve the experience

of using these different testing techniques by developing novel

interfaces that both contextualize the results and guide the user

through the results. Therefore, we can create an Alloy IDE that

aids in the development of models, rather than one that just

enables the development of models.

In this paper, we make the following contributions:

• Integrating AUnit Frameworks. We incorporate a range

of testing frameworks enabled by AUnit into the Ana-

lyzer, Alloy’s main IDE.

• Reporting. We design novel reports that are displayed

within the Analyzer to convey the results of different

testing frameworks.

• Case Study. We explore how the Analyzer Plus IDE can

help users find and fix faults in real world faulty models.

• Open Source. We release our IDE as an open-source

extension to the Analyzer. Analyzer Plus IDE can be

found at: https://alloyanalyzerplus.github.io/.

II. BACKGROUND

In this section, we illustrate key concepts of Alloy, AUnit,

and the various testing frameworks that utilize AUnit.

A. Alloy and AUnit

Figure 1 shows a real world faulty Alloy model of a Java

class diagram [40]. Signature paragraphs introduce named sets

and their relations. Line 1 introduces the named set Class,

which contains relation ext that conveys that each Class

atom can extend zero or one other Class atoms. Line 2 intro-

duces the named singleton (one) set Object that extends the

Class signature. Similar to imperative language inheritance,

a signature that extends another signature is a subsignature of

that signature. Predicates introduce named formulas that can

be invoked elsewhere. The predicate AllExtObject attempts

to state using universal quantification (all) that every class

except Object extends Object. The fault, in red, uses reflexive

transitive closure (*) and relational join (.) to accidentally

convey that every class is a sub-class of itself.

AUnit test cases consists of two components: a valuation,

which outlines a specific instance to reason over, and a

command, which outlines the formulas under test. A test case

passes if the valuation is a valid instance of the command;

otherwise, the test fails. In Alloy, there are two types of

faults that can appear in a model: (1) under-constrained
faults in which the model allows instances it should prevent,

and (2) over-constrained faults in which the model prevents

instances it should allow. Therefore, AUnit’s format allows for

users to directly check for these types of faults without having

to (1) enumerate scenarios until finding one that is malformed

or (2) enumerate all scenarios and realizing one was missing.

Figure 1 (b) and (c) textually and graphically show a failing

test case that highlights the fault in AllExtObject. Since

both Cls0 and Cls1’s are not connected to Obj0 through any

possible traversal of their ext relations, the valuation depicted

should not be found as a solution to AllExtObject. However,

due to the fault, the valuation will incorrectly be found as a

valid instance. We have previously introduced native support

for AUnit within the Analyzer [30], which expands Alloy’s

grammar to allow for the declaration of valuation (val)

paragraphs, support the declaration of test case commands

(@cmd) within valuations, and to flag Alloy-specific execution

commands which are for test cases (@Test).

B. AlloyFL

Given a faulty model and a fault revealing AUnit test

suite, AlloyFL returns a ranked list of suspicious abstract

syntax tree (AST) node locations in the faulty model. To

flag locations, AlloyFL supports five different suspiciousness

formulas: (1) Tarantula [14], (2) Ochiai [1], (3) Op2 [20],

(4) Barinel [2] and (5) DStar [42]. AlloyFL is a hybrid fault

localization technique that uses a combination of spectrum-

based fault localization and mutation-based fault localization

techniques. For spectrum-based fault localization, since Alloy

lacks control flow, the suspiciousness score is calculated per

predicate paragraph in the model. For mutation-based fault

localization, the suspiciousness score is calculated per AST

nodes covered by failing tests. For each flagged node, a

suspiciousness score is built based on how mutants generated

at that location change the test suite’s pass/fail behavior. The

user can apply a weight to determine how much of the final

aggregate score is scaled towards either the spectrum-based

or the mutation-based technique. By default, AlloyFL uses

the Ochiai suspiciousness formula and a weight of 0.4 (40%

mutant-based score and 60% spectrum-based score).

For our faulty class diagram model, AlloyFL returns a

ranked list of 7 faulty locations. The most suspicious location

is the actual faulty subformula “c in c.*ext,” with a suspi-

ciousness score of 0.80. This fault can be corrected by either

replacing the left operand with “Object” or replacing the

right operand with “Object.^ ext”. The next 3 suspicious

locations refer to expressions and formulas that relate to “c in

c.*ext.” For example, the second most suspicious location
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Fig. 2. AlloyFL Interface for the Faulty Class Diagram Model

is the quantified formula that directly encompasses the faulty

formula, which has a score of 0.76.

Motivation for Integration. Unlike the other AUnit extended

frameworks, AlloyFL is provided as an extension to the

Analyzer and is our motivation for porting the other tools,

μAlloy and ARepair, into the Analyzer. As a command line

tool, AlloyFL could just print a list of locations from most

to least suspicious to the screen; however, this would require

the user to determine where in the model these locations are.

Sometimes an expression or formula could appear multiple

times in a model; therefore, tying the command line output to

the right portions of the model can take some effort.

In contrast, by integrating AlloyFL into the Analyzer, we

can directly highlight the suspicious portion of the model

for the user, removing the ambiguity and enhancing the user

experience for exploring the ranked list of suspicious locations.

To achieve this, we updated the logging interface of the

Analyzer to have an “AlloyFL” report tab that displays the

ranked list and we automatically highlight locations in the text

editor pane based on their suspiciousness score. To illustrate,

Figure 2 shows both of these outputs for our example model.

A location in the model appears more red the more suspicious

the location is found to be. In addition, the user can elect to

highlight any single suspicious location.

C. μAlloy

μAlloy generates first-order mutants, generates mutant-

killing test cases and performs mutation testing on Alloy

models. To generate mutants, μAlloy makes changes to the

model at the abstract syntax tree (AST) level. For each visited

node, μAlloy finds all the applicable mutation operators and

applies each operator to the node one at a time. The list of cur-

rently supported mutant operators can be seen in Table I. For

example, if μAlloy encounters a unary formula, μAlloy would

attempt to apply UOD, UOI, and UOR mutant operators to

that node. During this process, μAlloy automatically discards

any mutated model that does not compile. In addition, μAlloy
also filters all equivalent mutants. Since we are mutating first

order logic statements, we can actually use Alloy itself to

check if the original formula and the mutated formula are log-

ically equivalent with respect to a user provided scope. If this

check fails, Alloy will find a counterexample that highlights

the difference between the original model and the mutated

model. Through μAlloy, users can elect to automatically turn

all of these counterexamples into test cases, which guarantees

that the user will have a test that can kill all non-equivalent

mutants. Once all mutants for a model have been generated,

μAlloy performs mutation testing using a user provided test

suite and reports the mutation score to the user.

For our example model and an test suite of size 8, μAlloy
generates 18 non-equivalent mutants and prunes 11 equivalent

mutants 0.7 seconds. Then, μAlloy performs mutating testing

over the 8 tests and 18 mutants in 0.4 seconds, which results in

a mutation score of 14/18. μAlloy generates one additionally

test case that kills all 4 remaining non-equivalent mutants.

Performing mutation testing on this updated test suite yields

a score of 18/18 in 0.45 seconds.

Current Limitations. μAlloy is currently supported as a

command line tool [37], which is limited to reporting the

score, listing the file name of any unkilled mutant and if

selected, printing the mutant killing test suite to a file location.

However, while this information can be helpful, it is currently

missing a lot of context that would enable a user to efficiently

apply mutation testing to help improve the quality of their

test suite and the accuracy of their model. First, any unkilled

mutant is stored as a complete, mutated Alloy model. The

user is then left to individually open these mutants and do a

differential comparison on their own to figure out the mutated

location in the model. Considering that a mutant could be

a single character change on one of the lines in the model,

having the user take on all the burden to hunt down where the

mutated statement is does not scale well, impacting how easily

users can rectify any unkilled mutants. Another limitation is

that μAlloy does not convey which non-equivalent mutants are

TABLE I
MUTATION OPERATORS

Mutation Description
Operator
MOR Multiplicity Operator Replacement
QOR Quantifier Operator Replacement
UOR Unary Operator Replacement
BOR Binary Operator Replacement
LOR List Operator Replacement
UOI Unary Operator Insertion
UOD Unary Operator Deletion
LOD Logical Operand Deletion
PBD Paragraph Body Deletion
BOE Binary Operand Exchange
IEOE Imply-Else Operand Exchange
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5.- all c: Class - Object | c in c.*ext }
5.+ all c: Class - Object | Object in c.*ext }

Fig. 3. ARepair Patch for the Faulty Class Diagram Model

connected to their associated mutant killing test case. Instead,

all tests appear in a single test suite file and the automatically

generated names for tests are in the format “Test[X].”

D. ARepair

ARepair follows the standard generate-and-validate ap-

proach, which takes as input a faulty Alloy model and an

AUnit test suite with at least one failing test. To fix the model,

ARepair uses a greedy, iterative approach where ARepair

explores potential patches and applies the first patch that

makes some failing tests now pass and no passing test now

fail. To generate patches, ARepair first checks if mutants

generated by μAlloy over just the faulty location can satisfy

the greedy choice. If not, ARepair builds an abstract syntax

tree representation of the faulty location and creates holes at

each level of the AST in a bottom-up fashion. Then, ARepair

uses Alloy’s grammar and RexGen [39], an Alloy expression

generator, to create lists of possible substitutions into each

hole. From there, ARepair explores different combinations of

substitutions into the holes, searching for a patch that satisfies

the greedy choice. If no such patch is found at the current

level of the AST, ARepair moves up a level in the AST and

repeats the process. In the end, this greedy approach either

finds a patch that makes all tests passing or fails to fix the

model.

For our faulty class diagram and a test suite with with

14 tests, in the first iteration, ARepair finds that a mutation

applied by AlloyFL can make four failing tests now pass but

no passing test fail. So, ARepair applies this mutation to the

model which mutates “c in c.*ext” to “c != c.*ext.”

ARepair then starts its second iteration, in which ARepair does

not find a mutant that satisfies the greedy choice. Therefore,

ARepair attempts to use the synthesizer to fix the model, which

results in “c != c.*ext” being replaced with “Object in

c.*ext.” At this point, ARepair determines that all tests have

now passed and the model is fixed. Once a patch is found,

ARepair then sends the fixed model to the simplifier, which

creates a presentable, human readable version of the patch. In

our case, the final patch, shown in Figure 3, is semantically

equivalent to the correct patch.

Current Limitations. ARepair is currently supported as a

command line tool [38]. As ARepair is executing, ARepair

displays the intermediate fixes and the final patch to the

terminal as completed, updated models. As a result, where

the model was changed throughout the process is not readily

apparent to the user. By the end, ARepair may have found a

successful patch by changing any predicate that is connected

to a failing test, changing a signature paragraph, or changing

multiple locations throughout the model. All the user knows

is that the final iteration displayed passes all tests, assuming

ARepair is able to successfully patch the model. Therefore,

the burden is entirely on the user to determine how the model

in

c .

c *

extLevel 4

Level 3

Level 2

Level 1

Fig. 4. AST Breakdown of the Faulty Binary Formula Node

was fixed, which the user will likely want to know to help

validate the patch. This also hinders the transfer of knowledge

to the end user, who would need to work hard to learn what

mistake they made in their original faulty model.

III. IMPLEMENTATION

In this section, we highlight the implementation changes that

we have made to support different testing techniques within

the Analyzer. These efforts combine together to form our new

integrated development environment: Analyzer Plus IDE.

A. AUnit Parser and Abstract Syntax Tree

We built our own parser that enables us to gather additional

information valuable for testing that is not available through

the original parser of the Alloy model. For AUnit, we inten-

tionally view different first-order logic formulas supported by

Alloy in a more nuanced context than Alloy needs to. Specifi-

cally, in AUnit, constraints which evaluate to sets are regarded

as expressions and constraints which evaluate to true and false

are regarded as formulas. We made this distinction because we

naturally envisioned different coverage requirements for each:

expression coverage criteria relate to the size of sets while

formula coverage criteria relate to the truth value. As a result

of creating a more fine-grained classification of nodes, we are

able to form smaller groups of mutant operators. Since μAlloy
is integral to both AlloyFL and ARepair, smaller mutant

operator groups enables use to apply a more narrow focus

during fault localization and repair that can lead to smaller

locations and a smaller patches respectively. In addition, these

distinctions reduce the number of non-compile-able first order

mutants we generate.

To illustrate, Figure 4 shows the AST of the faulty node

from our example model, which is the binary formula of the

form [expr] in [expr]. Our AUnit parser will view “c

in c.*ext” as a binary formula. However, we view the sub-

constraint “c.*ext” as a binary expression. As a result, AUnit

will consider these two first-order logic constraints to have dif-

ferent coverage information and to belong to different mutation

operator groups. To apply the BOR mutation operator on level

1 of the faulty AST (e.g. on formula “c in c.*ext”), the

set inclusion operator is replaced with the binary set operators

set exclusion (!in), set equality (=) and set inequality (!=).

Since the right hand and left hand operands for set inclusion

are both expressions, we do not additionally create the mutants

by substituting in binary logical operators (conjunction (and),

disjunction (or), implication (=>) or biconditional (<=>)).

These logical operators require the left and right hand operands

to be formulas to make sense and, in the Analyzer’s case, even

to compile. To apply the BOR mutation operator on level 2 of
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(a) μAlloy Execution GUI (b) μAlloy Test Generation GUI

Fig. 5. μAlloy User Interfaces

the faulty AST (e.g. on expression “c.*ext”), the relational

join operator is replaced with the binary set operators set union

(+), set intersection (&) and set difference (-) but not with any

operator that produces a formula.
However, to the Analyzer, all of these distinctions are

irrelevant, as the Analyzer simply needs to store information

relevant to translate the model to an equivalent conjunctive

normal form formula to hand off to a SAT solver. To help

facilitate these testing and debugging operations, the AUnit

parser includes support for the Visitor pattern, which allows

for the different testing frameworks to define their own actions

that occur for each type of node in the AST.

B. Supporting μAlloy

For μAlloy, our primary focus is to improve the user’s

ability to use μAlloy for the main benefit mutation testing

gives: determining the quality of your test suite, and if needed,

helping identify how to improve your test suite.
1) Report Designs: For the μAlloy report tab, we first share

all the details of the mutation testing execution ranging from

the mutation score to the total time taken. Then, the rest of

the report tab is dedicated to helping users investigate any

unkilled, non-equivalent mutants. Specifically, we present the

user with a list of all unkilled mutant and enable the user to

drill into each of these by presenting in a separate pop up

window that contains (1) the mutant killing test case textually

and graphically and (2) the mutated location. As mentioned

before, one of the key benefits of performing mutation testing

in Alloy compared to imperative languages is that we can

use Alloy to not only detect non-equivalent mutants but to

also produce a mutant killing test case. However, μAlloy’s
command line prototype does little to help the user apply

this information effectively, mainly by keeping the generated

test case and the corresponding mutant separated in outputs

presented to the user.
Figure 5 shows examples of the main interfaces for μAlloy

in Analyzer Plus IDE for our faulty class diagram model.

Figure 5 (a) shows the main mutation testing report that

appears in the main Analyzer logging pane. For our example,

the user is presented with the overall mutation score first,

77.7%. Then, the unkilled mutants are listed. The user can

select the “View mutant killing test case” link to investigate

each unkilled mutant individually. Selecting this link for our

example model and any of unkilled mutant listed, produces

the GUI in Figure 5 (b), as all four remaining mutants are

killed by this test case.

This pop-up GUI contains all the information the user needs

to determine if she would like to add the test case to their

model. The automatically generated test case is displayed to

the user graphically, for easy inspection, and textually, to

easily be copied. In addition, we present a breakdown of the

mutant location, so the user can easily identify what part of the

model was mutated. Importantly, our interface directly couples

the mutant together with the mutant-killing test case. As a

result, Analyzer Plus IDE improves the ability of the user

to effectively leverage μAlloy to strengthen their existing test

suite. In addition, since new tests are generated, adding these

test to their model can use help reveal potential faults in their

model, should a test case unexpectedly fail.
2) Usage: μAlloy can be run in two ways. First, the user

can press the μAlloy icon on the icon menu bar. Second, the

user can select the “Execute μAlloy” option from the μAlloy
dropdown menu. By default, μAlloy will generate mutants,

create mutant-killing test cases and then perform mutation

testing using the generated mutants and the original test suite,

which does not include any of the test cases generated by

μAlloy. The only setting the user can configure for μAlloy is

whether or not to save the test suite to a local file.

C. Supporting ARepair

For ARepair, our primary focus is to improve the user’s

ability to easily understand what part of the model was

patched, in order for the user to feel comfortable in accepting

the automatically repaired model.
1) Report Designs: For the ARepair, we first present how

the model is patched to the user, so the user can easily decide

if they want to adopt the patch. To achieve this, the user

can click the “view patched model” to be presented with a

complete model that passes all tests. In addition, to give more

context on what changed, we display a “diff” of any patched

structures within the Alloy model. In green, we highlight

anything that has been inserted into the model. In red, we

highlight anything that has been deleted. Second, we want to

highlight the previously failing test cases that now pass, as

this is the direct behavior we have changed. Figure 6 shows

the main report tab for ARepair for our faulty class diagram
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TABLE II
PERFORMANCE RESULTS OF AUNIT TESTING FRAMEWORKS FOR CASE STUDY MODELS

Model #AST #Flt #Test #Fail Scp MuAlloy AlloyFL ARepair
#Mut Time[s] Rank Time[s] Acc Time [s]

array 68 1 38 1 3 62 9.9 1:8 4 � 7.8
cd 52 1 16 5 3 18 0.41 1:7 1.32 � 1.85

fsm 85 1 21 2 5 72 4.5 1:21 1.2 � 0.6
scl 176 3 66 6 3 91 8.15 1:23 12.9 � 268.8
sll 40 1 23 4 3 38 1.1 1:9 2.05 � 0.35

Fig. 6. ARepair User Interfaces

model. After displaying all patched structures, we then present

all previously failing tests that now pass. For each test case,

we allow the user to graphically view the valuation of the test

case and we additionally present the command of the test case

textually. The command is broken up into two components: the

command explicitly outlined in the test case and the facts of

the model which are always implicitly enforced. In addition,

during execution, the main log tab maintains a record of each

iteration ARepair undergoes and its associated information,

such as the number of failing tests that were updated to passing

tests based on the intermediate fix. The information displayed

in the log tab, the Analyzer’s main execution report log, is the

information the command line tool produces.

2) Usage: ARepair can be run in two ways. First, the user

can press the ARepair icon on the icon menu bar. Second,

the user can select the “Execute ARepair” option from the

ARepair drop-down menu. In addition, the user can configure

different parameters for the ARepair execution:

• Search Strategy: This specifies the type of search the syn-

thesizer should conduct when considering how to combine

together substitutions into different holes. The user can

toggle between “all-combinations” or “base-choice.”

– For all combinations, ARepair tries all combinations of

candidate fragments for all holes until it finds some

failing test passed and no passing test failed. All combi-

nations is akin to a brute force approach: it is more likely

to find a patch but suffers from runtime scalability issues.

– For base choice, ARepair holds all holes constant except

one hole. For that hole, ARepair explores candidate

fragments and picks the one that makes the maximum

number of failing tests pass and no passing test fails.

Base choice scales better but could miss a patch.

• Max Try Per Hole: This parameters is used when the

search strategy is “base-choice”. The user can specify the

maximum number of candidate expressions to consider

for each hole during repair as the argument. By default,

ARepair uses 1000.

• Number of Partitions: This parameter is used when the

search strategy is "all-combinations". The user can specify

the number of partitions of the search space for a given

hole. If By default, ARepair uses 10.

• Max Try Per Depth: This parameter is used when the

search strategy is "all-combination". The user can specify

the maximum number of combinations of candidate expres-

sions to consider for each level/depth of holes during repair.

By default, ARepair uses 10000.

• Save Patch: The user can specify whether or not to save

a copy of the patched model to their local machine. By

default, ARepair does save the patch.

IV. CASE STUDY

All models in our case study are real world faulty models

created by novice users learning Alloy [40]. One of the most

common uses of Alloy is educational. Since Alloy renders its

scenarios graphically, the output of the model feels approach-

able to new users. This allows educators to highlight with

graphical illustrations how different formulas work or interact

with other formulas. While educational, our models are still

reflective of mistakes users make when writing models and

based on a recent user study [16], the faults in our study are

the same type of fault even expert modelers introduce into

Alloy models. For our case study, we focus on two types of

faults: (1) models in which the fault is extremely subtle: all

models are incorrect due to a single character and (2) a faulty

model with multiple mistakes within it, in which we highlight

how the frameworks can combine together to help correct it.

Table II highlights the efficacy of the different testing

techniques over our running example, the class directory, as

well as the illustrative examples in our case study, to give a

frame of reference for the performance of these techniques as

we step over how a user would realistically leverage them.

Column Model coveys the model under test. The next 4

columns help convey the size of the model and fault: Column

#AST is the number of AST nodes the model is comprised of

excluding the test suite, #Flt is the number of faulty locations,

#Test is the size of the test suite, which is produced by μAlloy,
#Fail is the number of failing tests and Scp is the scope used.

The next six columns display performance information for

the three frameworks. #Mut is the number of non-equivalent

mutants generated. Rank is a ratio of where the faulty location
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sig Element {}
one sig Array {

i2e: Int -> Element, length: Int
}
fact InBound {

// All indexes should be valid #s.
all i:Element.~(Array.i2e) {

i > 0 && i < Array.length
}
Array.length >= 0

}

one sig FSM {
start: set State, stop: set State
}
sig State { transition: set State }
fact ValidStartAndStop {

FSM.start != FSM.stop
//No transition ends at the start state.
all s:State | FSM.start != s.transition
no FSM.stop.transition

}

sig List { header: lone Node }
sig Node { link: lone Node }
pred Acyclic(l:List) {

//Some node terminates the list.
no l.header or
some n : Node {

n in l.header.^link => no n.link
}

}

(a) (b) (c)

Fig. 7. Faulty Models with a Single Character Bug

(a) μAlloy Results (b) μAlloy Fault Revealing Test

Fig. 8. Debugging a Array Model

is on the ranked list compared to the total number of suspicious

locations flagged. Acc displays the accuracy of the patch: (�)

means the patch is logically equivalent to the oracle solution,

(�) means the patch is plausible, i.e. passes all tests but it not

logically equivalent to the oracle patch. Time[s] conveys the

total execution time, from pressing the button to execute the

framework in Analyzer Plus IDE to the time Analyzer Plus

IDE finishes populating the report panel, in seconds.

Each framework has a full evaluation done within their re-

spective research papers, that can be referenced for further per-

formance insights across larger scale benchmarks [31, 36, 40].

Rather than focusing on repeating performance evaluations,

this section highlights how these different testing interfaces

can proactively help users debug real world faulty models.

A. Single Character Bugs

Figure 7 highlights three different models: (a) an array data

structure, (b) a finite state machine and (c) a singly linked list

data structure. The faulty character, in red, for each model is

the result of the user selecting the wrong operator. We include

only the faulty predicate or fact in our paper, the complete

models can be found on Analyzer Plus IDE’s website. In Alloy,

a single character change can have a subtle impact on the

underlying model. For instance, if the wrong operator makes

the model overconstrained, meaning the fault prevents a valid

formula from being found, a user may find themselves in the

situation where, to notice the fault, the user needs to enumerate

all scenarios and realize one or two were missing. Given that

predicates often produce hundreds of scenarios, this type of

error is extremely difficult to spot in practice.

To highlight how Analyzer Plus IDE can help ease this

burden, we illustrate the following steps. First, we draft a

single test case for each model. Then, we perform mutation

testing using μAlloy and save the generated test suite. After

providing an oracle for the test suite, we then execute the test

suite and investigate any failing test(s) and their corresponding

mutant. From there, we step over how investigating the failed

test case(s) and applying various AUnit frameworks can lead

the user to a correct model.

1) Array: For the array in Figure 7 (b), the user accidentally

put greater than instead of greater than or equal (>=). Figure 8

(a) shows the results from running μAlloy starting with a single

test created that outlines a valid array of size 0. This test case

kills just 9 of 62 mutants. To kill the remaining 53 mutants, an

additional 33 tests are created. Figure 8 (b) displays the mutant

killing test case for the BOR mutant which mutates “i > 0”

to “i >= 0.” For the displayed test case, the user would label

this test as valid, as the indices for the array are assigned values

0 and 1 and the length of the array is 2. However, when the

user runs the corresponding test case, the user will find that

it is incorrectly invalid for their model. After labeling all the

test cases μAlloy produces, the user would discover that the

test in Figure 8 (b) is the only failing test.

Since only a single tests fails, the user can jump immedi-

ately to applying the mutant to fix their model. If the user

goes back to the μAlloy results and pulls up the mutant tied

to the test in Figure 8 (b), the user will discover that applying

the BOR mutant “i >= 0” will cause their failing test to

now pass, fixing the model. Should the user want further

confirmation, the user can run AlloyFL, which returns the

same location (“i > 0”) as the most suspicious location, with

a score that is notable higher than the next location.

2) FSM: For the finite state machine in Figure 7 (a),

the user accidentally put set inequality instead of subset
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(a) μAlloy Results (b) μAlloy Fault Revealing Test

(c) AlloyFL Results

Fig. 9. Debugging a Faulty Finite State Machine Model

exclusion (!in). Figure 9 (a) shows the results from running

μAlloy with a single test that outlines a valid FSM with

two states. This test case kills 38 of 72 mutants. To kill

the remaining 34 mutants, an additional 20 tests are created.

Figure 9 (b) displays the mutant killing test case for the BOR
mutant that replaces “FSM.State != s.transition” with

“FSM.State !in s.transition.” For this test case, the

user would label this test as invalid, as State1 contains a

transition that ends in the start state. However, when the user

runs the test case, the user will find that it is incorrectly valid

for their model. In fact, after labeling all the test cases μAlloy
produces, the user will end up with 2 failing tests. The other

failing test was generated for the MOR mutant that changes

the declaration relation from “transition: set State” to

“transition: lone State.”

Given that more than one test fails and the failing test cases

are tied to two very different mutated locations, the user may

jump to running AlloyFL to help narrow in on the faulty

behavior. The results of which can be seen in Figure 7 (c).

However, the user will discover that two locations are tied for

the most suspicious location with a score of 0.59: the location

of the BOR change and the location of the MOR change that

produced the two failing test cases. This is where the μAlloy’s
test generation GUI can help guide the user.

First, to take a closer look at the test case in Figure 9 (b),

the user can run the Evaluator, a tool within the Analyzer

that returns the concrete value of an expression or formula

over a specific instance, on this test case’s valuation to reveal

that the suspicious formula associated with this test case con-

cretely evaluates to “State0 != {State0,State1}.” From

this, the user can see that the use of set inequality in this

formula means that if a state has multiple transitions, then

that state can incorrectly have the starting state as one of

its transitions, as a singleton set will never match a set with

multiple elements. For the other most suspicious location, the

fix implied by the mutant is to limit the multiplicity constraint

for the translation relation. In this case, the problematic

formula “FSM.State != s.transition” will not be an

issue because the expression “s.translation” will either

be empty or a singleton set, successfully preventing a state

from transitioning to the starting state.

If the user applies either the BOR or MOR mutant, the

user will find that either change will make both failing tests

now pass. However, because of the detailed μAlloy report, the

user can quickly distinguish that the MOR patch would be

plausible to the user’s intentions: applying this mutant would

make all tests pass, but limit the functionality of the finite state

machine more than the user would want. As a result, the user

would adopt the BOR mutant change, resulting in a corrected

finite state machine model. As seen in Table II, ARepair would

actually apply the MOR mutant to fix this model, resulting in

a plausible patch instead of a correct patch.

3) List: For the singly-linked list in Figure 7 (c), the user

accidentally used reflexive transitive closure instead of transi-

tive closure (^). Figure 10 (a) shows the results from running

μAlloy with a single test that outlines a valid list of size 2.

This test case kills just 9 of 38 mutants. To kill the remaining

29 mutants, an additional 23 tests are created. Figure 10 (b)

displays the mutant killing test case for the UOR mutant

that mutates “l.header.*link” into “l.header.^link.”
For the displayed test case, the user would label this test

as invalid, as there is a cycle in the list with the last two

nodes pointing back to each other. However, when the user

runs the corresponding test case, the user will find that it is

incorrectly valid for their model. After labeling all the test

cases μAlloy produces, the user would discover that there are

actually 4 failing test cases. All 4 failing tests contain a list

with a cycle and are incorrectly found as valid instances for

the faulty model.

Given how many tests fail, the user is likely to use AlloyFL
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(a) μAlloy Results (b) μAlloy Fault Revealing Test

(c) AlloyFL Results

Fig. 10. Debugging a Faulty Singly-Linked List Model

1. one sig List { header : lone Node }
2. sig Node { link: lone Node, elem: one Int }
3. fact connected { List.header.*link = Node }
4. pred Loop(This: List)
5. no This.header.link or
6. one n: This.header.*link | n.link = n
7. }
8. pred Sorted(This: List) {
9. all n: This.header.*link {
10. one n.link && n.elem <= n.link.elem
11. }}
12. pred RepOk(This: List) { Loop[This] and Sorted[This] }

Fig. 11. Faulty SLL Model

to narrow in on the faulty behavior. Figure 7 (c) displays the

results from running AlloyFL on the μAlloy test suite. The

faulty expression is the tied as the most suspicious location,

with a a score of 0.62. The link relation declaration is also

flagged as the most suspicious location, which helps reiterate

that there is an issue relating to how the link’s in the list are

forming. To choose between which locations to edit, the user

can see that the next 3 suspicious locations flagged by AlloyFL

all encompass the ^link expression. If the user checks the

μAlloy report, the user can then try applying the mutant UOR,

which the user would narrow in on because it is the only

mutant that produces a failing test (Figure 10 (b)) and directly

mutates the flagged location.

B. Multiple Faults - SLL

The sorted looped list model (SLL) contains the following

predicates: Loop which outlines that the last node in the linked

list points to itself, Sorted which outlines that element should

appear in sorted order in the list and RepOk which applies

both Loop and Sorted together. Figure 11 depicts a faulty

version of this model with 3 different faulty locations across

2 different predicates. To illustrate how Analyzer Plus IDE can

help a user triage a model with multiple faulty locations, we

first create a single test case that depicts a valid loop list with

3 nodes. Then, we ran μAlloy and collected the generated test

suite, which produced 65 tests. After labeling these tests as

valid or invalid, we end up with 6 failing tests.

Next, we highlight how the AUnit frameworks can be used

iterative. First, running AlloyFL on the initial version of the

faulty model produces the results in Figure 12 (a). For the

most suspcious location, μAlloy has a single mutant associated

with a failing test for this location; therefore we update “one
n.link” to “no n.link.” After than, running AlloyFL again

produces the results in Figure 12 (b). Based on the currently

failing tests and the μAlloy results, we then changed “&&”

to “||”. This fully fixes the faulty Sorted predicate, but still

leaves 5 failing test cases. Running AlloyFL on this new

version produces the results in Figure 12 (c). This time, the

most suspicious location is connected to multiple failing tests

that are derived from different mutants; therefore, there is not a

clear mutant to apply. At this point, the user can run ARepair,

which produces the results in Figure 13.

Whether a small, subtle bug or a series of larger bugs

that noticeably alters the behavior of the model, our case

study highlights that Analyzer Plus IDE is able to help guide

users towards a corrected model by helping the user: build a

strong starting test suite (μAlloy), learn more about any faulty

behavior based on the difference between their model and

the mutant(s) that produce failing test(s) (μAlloy), and help

the user figure out where to change their model (AlloyFL).

Moreover, if the user does not know where to get started

to debug their fault, or if the user would rather spend their

modeling efforts writing additional predicates, Analyzer Plus

IDE can always automatically fix the model for the user

(ARepair). The performance of running ARepair on these

models can be seen in Table II. For the single character faults,

ARepair finds a patch very quickly, as expected since these

faults can be repaired by mutation. For the larger SLL model,

ARepair patches the model in 4.5 minutes.
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(a)

(b)

(c)

Fig. 12. AlloyFL GUIs for Debugging the SLL Model

Fig. 13. ARepair GUIs for Repairing the SLL Modelt

V. RELATED WORK

In this section, we give an overview of work related to Alloy.

Debugging Techniques for Alloy. The testing frameworks

Analyzer Plus IDE integrates into the Analyzer are based on

tools that are coupled with AUnit tests. However, there are

other debugging techniques for Alloy that use assertions. For

repair, ICEBAR extends ARepair to consider built in Alloy

assertions over test cases to guide the repair and check candi-

date patches [10]. ATR is an Alloy repair technique that tries

to find patches based on a preset number of templates and uses

Alloy assertions as an oracle. BeAFix is an automated repair

technique that uses a bounded exhaustive search [11]. TAR is

a mutation-oriented repair technique that is aimed at repairing

Ally4Fun models, which are educational exercises [7]. FLACK

is a fault localization technique that locates faults by using a

partial max sat toolset to compare the difference between a

satisfying instance of a predicate and a counterexample from

an assertion over that predicate [45].

These techniques all focus heavily on using assertions for

debugging. Alloy assertions can be a powerful tool for users,

but assertions are written in first order logic. Our focus with

Analyzer Plus IDE is to improve the native support within

the Analyzer for AUnit-based frameworks, as a novice user is

more likely to accurately write an AUnit test case than an more

robust but complicated assertion. In the future, Analyzer Plus

IDE can benefit from incorporating these other frameworks to

give users even more ways to test and debug their models.

Scenario Explanation. In a similar vain to testing, there

have been a few bodies of work that look to explain why

a instance was generated for an Alloy command execution.

Analyzer Plus IDE shares a synergy with Amaglam, which

aims to help users understand why a instance was found as

a solution to an executed command. Specifically for a given

instance, Amaglam will generate a trace to outline why a user

selected atom or tuple was generated to satisfy the executed

command [21]. Recent work also introduced abstract instances

for Alloy, which looks to distinguish between portions of a

scenario that are present to satisfy the overall, global facts

of the model compared to the portions of a instance that are

present to satisfy the explicitly executed constraints of the Al-

loy command [26]. Both these frameworks are complimentary

to the overall purpose of Analyzer Plus IDE.

Extensions to the Analyzer for Enumeration. Viewing

scenarios is a common “spot check” process for Alloy users,

in addition to scenarios being used for test generation and

other testing activities. As a result, over the years, there have

been several extensions to the Analyzer to influence the way

that scenarios are enumerated. A common approach is to try

and provide users with an interesting subset of scenarios that

may be more valuable to the user: Aluminum enumerates

minimum scenarios [22], Hawkeye allows users to influence

what instance gets enumerated next based on the current

scenario [28], CompoSAT enumerates scenarios with unique

coverage [25], and Seabs allows user to enumerate scenarios

that differ based on abstract functions [29]. In addition, Reach

allows users to enumerate scenarios by size and does not

reduce the number of scenarios generated [15].

VI. CONCLUSION AND FUTURE WORK

While the Alloy Analyzer is a strength of Alloy com-

pared to other modeling languages, it is far behind the

IDEs for imperative code, e.g. Eclipse for Java. As a result,

the development process in Alloy can still feel rough and

unaccommodating. We believe a key functionality missing

from the Alloy Analyzer is a structured format for users to

verify the correctness of a model. Therefore, we introduce the

Analyzer Plus IDE, an integrated development environment for

Alloy models that contains several testing features including

test generation, mutation testing, fault localization and repair.

Our case study highlights how these testing frameworks can

improve developer productivity when debugging models and

aid in the creation of more accurate software models. Recently,

Alloy was updated to support linear temporal logic. As a result,

Alloy is now able to directly express behavioral properties of a

system in addition to structural properties of a system. As new

versions of AUnit and the AUnit enabled testing frameworks

are released, we plan to update Analyzer Plus IDE to build an

IDE that also supports testing temporal models.

126



REFERENCES

[1] Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund,

A.J.C.: A practical evaluation of spectrum-based fault

localization. JSS (2009)

[2] Abreu, R., Zoeteweij, P., Van Gemund, A.J.: Spectrum-

based multiple fault localization. In: ASE (2009)

[3] Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.:

Towards a formal foundation of web security. In: 2010

23rd IEEE Computer Security Foundations Symposium.

pp. 290–304 (2010)

[4] Bagheri, H., Kang, E., Malek, S., Jackson, D.: A formal

approach for detection of security flaws in the Android

permission system. Formal Asp. Comput. (2018)

[5] Bagheri, H., Kang, E., Malek, S., Jackson, D.: A formal

approach for detection of security flaws in the android

permission system. In: Formal Aspects of Computing.

p. 544 (2018)

[6] Bagheri, H., Sullivan, K.: Model-driven synthesis of

formally precise, stylized software architectures. Form.

Asp. Comput. 28(3), 441–467 (May 2016)

[7] Cerqueira, J., Cunha, A., Macedo, N.: Timely specifi-

cation repair for alloy 6. In: Software Engineering and

Formal Methods. pp. 288–303 (2022)

[8] Chong, N., Sorensen, T., Wickerson, J.: The semantics

of transactions and weak memory in x86, Power, ARM,

and C++. SIGPLAN Not. 53(4), 211–225 (2018)

[9] Dini, N., Yelen, C., Alrmaih, Z., Kulkarni, A., Khurshid,

S.: In: Proceedings of the 33rd Annual ACM Symposium

on Applied Computing. pp. 1934–1943 (2018)

[10] Gutiérrez Brida, S., Regis, G., Zheng, G., Bagheri, H.,

Nguyen, T., Aguirre, N., Frias, M.: ICEBAR: Feedback-

Driven Iterative Repair of Alloy Specifications. Associ-

ation for Computing Machinery, New York, NY, USA

(2023)

[11] Gutiérrez Brida, S., Regis, G., Zheng, G., Bagheri, H.,

Nguyen, T., Aguirre, N., Frias, M.: Bounded exhaustive

search of alloy specification repairs. In: ICSE. pp. 1135–

1147 (2021)

[12] Hao, J., Kang, E., Sun, J., Jackson, D.: Designing

minimal effective normative systems with the help of

lightweight formal methods. In: Proceedings of the 2016

24th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering. p. 50–60. FSE 2016,

Association for Computing Machinery, New York, NY,

USA (2016)

[13] Jackson, D.: Software Abstractions: Logic, Language,

and Analysis. The MIT Press (2012)

[14] Jones, J.A., Harrold, M.J.: Empirical evaluation of the

tarantula automatic fault-localization technique. In: ASE

(2005)

[15] Jovanovic, A., Sullivan, A.: Reach: Refining alloy sce-

narios by size. In: ISSRE (2022)

[16] Mansoor, N., Bagheri, H., Kang, E., Sharif., B.: An

empirical study assessing software modeling in alloy. In:

International Conference on Formal Methods in Software

Engineering. p. To Appear (2023)

[17] Mansoor, N., Saddler, J.A., Silva, B., Bagheri, H., Cohen,

M.B., Farritor, S.: Modeling and testing a family of

surgical robots: An experience report. In: Proceedings

of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on

the Foundations of Software Engineering. p. 785–790.

ESEC/FSE 2018, Association for Computing Machinery,

New York, NY, USA (2018)

[18] Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class

diagrams analysis using Alloy revisited. In: MODELS

(2011)

[19] Marinov, D., Khurshid, S.: Testera: a novel framework

for automated testing of java programs. In: Proceedings

16th Annual International Conference on Automated

Software Engineering (ASE 2001). pp. 22–31 (2001).

https://doi.org/10.1109/ASE.2001.989787

[20] Naish, L., Lee, H.J., Ramamohanarao, K.: A model for

spectra-based software diagnosis. TSE (2011)

[21] Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi,

S.: The power of "why" and "why not": Enriching

scenario exploration with provenance. In: FSE (2017)

[22] Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krish-

namurthi, S.: Aluminum: Principled scenario exploration

through minimality. In: ICSE (2013)

[23] Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Kr-

ishnamurthi, S.: The Margrave tool for firewall analysis.

In: LISA (2010)

[24] Newcombe, C., Rath, T., Zhang, F., Munteanu, B.,

Brooker, M., Deardeuff, M.: How amazon web services

uses formal methods. Commun. ACM 58, 66–73 (Mar

2015)

[25] Porncharoenwase, S., Nelson, T., Krishnamurthi, S.:

CompoSAT: Specification-guided coverage for model

finding. In: FM (2018)

[26] Ringert, J.O., Sullivan, A.: Abstract alloy instances. In:

FM. p. To Appear (2023)

[27] Samimi, H., Aung, E.D., Millstein, T.D.: Falling back

on executable specifications. In: ECOOP. pp. 552–576

(2010)

[28] Sullivan, A.: Hawkeye: User guided enumeration of

scenarios. In: ISSRE (2021)

[29] Sullivan, A., Marinov, D., Khurshid, S.: Solution enu-

meration abstraction - A modeling idiom to enhance a

lightweight formal method. In: ICFEM (2019)

[30] Sullivan, A., Wang, K., Khurshid, S.: AUnit: A Test

Automation Tool for Alloy. In: ICST. pp. 398–403 (2018)

[31] Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.:

Automated test generation and mutation testing for Alloy.

In: ICST. pp. 264–275 (2017)

[32] Sullivan, A., Zaeem, R.N., Khurshid, S., Marinov, D.:

Towards a test automation framework for Alloy. In:

SPIN. pp. 113–116 (2014)

[33] Taghdiri, M.: Inferring specifications to detect errors in

code. p. 144–153. ASE ’04, IEEE Computer Society

(2004)

127



[34] Trippel, C., Lustig, D., Martonosi, M.: Security verifica-

tion via automatic hardware-aware exploit synthesis: The

CheckMate approach. IEEE Micro (2019)

[35] Uzuncaova, E., Khurshid, S., Batory, D.: Incremental

test generation for software product lines. IEEE Trans-

actions on Software Engineering 36(3), 309–322 (2010).

https://doi.org/10.1109/TSE.2010.30

[36] Wang, K., Sullivan, A., Khurshid, S.: Automated model

repair for Alloy. In: ASE. pp. 577–588 (2018)

[37] Wang, K., Sullivan, A., Khurshid, S.: MuAlloy: A Muta-

tion Testing Framework for Alloy. In: ICSE Demo Track.

pp. 29–32 (2018)

[38] Wang, K., Sullivan, A., Khurshid, S.: ARepair: A repair

framework for Alloy. In: ICSE Demo. pp. 103–106

(2019)

[39] Wang, K., Sullivan, A., Koukoutos, M., Marinov, D.,

Khurshid, S.: Systematic generation of non-equivalent

expressions for relational algebra. In: ABZ. pp. 105–120

(2018)

[40] Wang, K., Sullivan, A., Marinov, D., Khurshid, S.: Fault

localization for declarative models in alloy. In: ISSRE.

pp. 391–402 (2020)

[41] Wickerson, J., Batty, M., Sorensen, T., Constantinides,

G.A.: Automatically comparing memory consistency

models. In: POPL (2017)

[42] Wong, W.E., Debroy, V., Gao, R., Li, Y.: The DStar

method for effective software fault localization. IEEE

Transactions on Reliability (2014)

[43] Zaeem, R.N., Khurshid, S.: Contract-based data structure

repair using Alloy. In: ECOOP. pp. 577–598 (2010)

[44] Zave, P.: Using lightweight modeling to understand

chord. SIGCOMM Comput. Commun. Rev. 42, 49–57

(2012)

[45] Zheng, G., Nguyen, T., Gutiérrez Brida, S., Regis,

G., Frias, M.F., Aguirre, N., Bagheri, H.: Flack:

Counterexample-guided fault localization for alloy mod-

els. In: 2021 IEEE/ACM 43rd International Conference

on Software Engineering (ICSE). pp. 637–648 (2021)

128


