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ABSTRACT
In today’s society, we are becoming increasingly dependent on soft-
ware systems. However, we also constantly witness the negative
impacts of buggy software. Program synthesis aims to improve soft-
ware correctness by automatically generating the program given an
outline of the expected behavior. For decades, program synthesis
has been an active research field, with recent approaches looking to
incorporate Large LanguageModel. This paper explores the concept
of LLM4TDD, where we guide Large Language Models to gener-
ate code iteratively using a test-driven development methodology.
We conduct an empirical evaluation using ChatGPT and coding
problems from LeetCode to investigate the impact of different test,
prompt and problem attributes on the efficacy of LLM4TDD.

CCS CONCEPTS
• Software and its engineering→ Software development tech-
niques.
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1 INTRODUCTION
Our lives are increasingly dependent on software systems. However,
these same systems, even safety-critical ones, are notoriously buggy.
While there are a plethora of software testing and verification
techniques, software failures continue to grow in number. A 2022
study found that software failures cost US companies a staggering
$2.41 trillion annually, up from $2.08 trillion in 2020 [4]. Therefore,
there is a growing need to find ways to produce reliable software.

One avenue to improve software accuracy is to use program
synthesis techniques to automatically generate code that, by design,
will adhere to user-provided specifications of intended behavior.
Program synthesis has existed for decades [18, 25, 27] and has
remained an active research field [3, 11, 26]. Recently, the program
synthesis community has considered how to utilize Large Language
Models (LLMs) to help generate code [1, 8, 16].
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In this paper, we explore a human-in-the-loop synthesis frame-
work that modifies test driven development (TDD) to incorporate
LLMs. Our insight is that test code is conceptually easier to write
than implementation code. While the implementation code must
accurately reflect the intricate logic needed to satisfy the system’s
specifications, test code only needs to compare that a given input
produces the expected output. We outline a TDD framework in
which the user writes a unit test, a LLM generates code such that
this unit test now passes, and then the user provides another unit
test and the cycle repeats. While tests are an approximation of
intended behavior, which can provide issues for program synthesis
techniques, the human-in-the-loop design of our TDD framework
enables the user to incrementally guide code generation and course
correct the synthesis process through seeding a behavior correcting
test to the LLM. To evaluate this development process, we perform
an empirical study using LeetCode programs and ChatGPT.

Specifically, we make the following contributions:
LLM4TDD:We outline a code generation framework that modifies
test-driven development to incorporate LLMs.
Evaluation:We investigate LLM4TDD over a range of LeetCode
problems to determine the impact different attributes of the problem
space have on the success of LLM4TDD.
Best Practices: Based on our evaluation, we destill a series of
guidelines for how best leverage our LLM4TDD framework to in-
crementally generate code.
Dataset for TDD in LLMs: Our dataset with problems, test suites
and prompts is at: https://github.com/SanyogitaPiya/LLM4TDD.

2 TEST-DRIVEN DEVELOPMENT
In this section, we provide an overview of the traditional test-driven
development process.

Test driven development is an incremental software develop-
ment methodology that focuses on creating tests before the imple-
mentation. Specifically, for a given iteration, a software developer
considers a test, if it fails, then the developer adds just enough func-
tionality to the code such that the test case now passes. Then, the
process restarts with a new test under consideration. As needed, be-
tween iterations, the underlying code is refactored. As an example,
consider building a calculator program and starting with a test that
adds 2 and 3 together. The first iteration of TDD would produce:

def test_add_positives
assert add(2,3) == 5

def add(x, y):
return 5
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Figure 1: Overview of the LLM4TDD Process

The minimal code the user needs to create in order for this test to
pass is to simply have the add method directly return “5.”

In the next iteration, the user would pick another test for add:

def test_add_positives
assert add(2,3) == 5

def test_add_mixed
assert add(-2,3) == 1

def add(x, y):
return x + y

In order to make the new and original test pass, the user will
now update the function to add the two integers, x and y, together.

2.1 Motivation for Integrating LLMs
In this paper, we investigate the effectiveness of a modified TDD
process, LLM4TDD, that uses LLMs to generate the implementation
code as the user gives guidance by providing test cases as prompts.
Our motivation is two-fold. First, LLM4TDD is designed to keep
a degree of developer ownership over the implementation, while
separating out the error-prone task of actually writing the imple-
mentation. In the end, writing test code is logically simpler than
writing implementation code. All the user needs to do to create test
code is to (1) set up an initial state with values given to all rele-
vant variables, (2) execute the method and (3) compare the actual
output to the expected output. In contrast, implementation code re-
quires the user to logically produce a series of statements that when
executed, achieve the desired effect. This can involve nested con-
trol structures, recursion, and efficient but error-prone algorithms
designs such as divide and conquer or dynamic programming.

Second, developer trust in accepting an automatically generated
program is a known barrier to adoption of program synthesis, as
synthesis techniques are largely black-box [7, 12, 13]. By maintain-
ing human interaction throughout our process, our hope is that
LLM4TDD avoids this issue. In particular, academic and industrial
case studies have highlighted that the test-driven development pro-
cess leads to developer’s feeling increased confidence and compre-
hension of their code [2, 19]. Although developers using LLM4TDD
are not personally writing the implementation, the developer still
witnesses incremental changes to the code that transform the code
to address the specific behavior captured by their test.

3 THE LLM4TDD PROCESS
This section provides an overview of the LLM4TDD workflow,
including how prompt interactions are set up, and the iterative
process for code development and evaluation. This workflow is also
captured in the flowchart diagram seen in Figure 1.

The first two blocks of the diagram in Figure 1 are effectively
the input to the LLM4TDD framework. First, a problem should be
selected that the LLM4TDD process will be used to generate code
for. In our evaluation, this is LeetCode challenges, but this could be
any function a developer needs to produce to satisfy their project
requirement(s). Second, a test suite is needed that will serve as the
bank of tests incrementally sent to the LLM as prompts. From there,
LLM4TDD has the developer set up a coding environment, such
as Eclipse or Visual Studio Code. This environment will be used to
execute tests against the source code generated. Then, to start the
iterative part of the LLM4TDD process, we provide a LLM with a
prompt that contains a test case and instructions on how to perform
TDD. To illustrate, here is our initial prompt template:

You are tasked with solving a coding problem using Test-
Driven Development principles. Your goal is to implement a
function/method to satisfy a set of predefined tests. Your func-
tion/method should return the expected output for all tests.
The function name is [function signature]:
Your task is to iteratively modify this function based on provided
tests. If the test case fails, you should:
Suggest code modifications to make the test case pass or ask for
clarifications if needed, such as constraints or edge cases.
Continue this process until all the defined test cases pass.
During the process, make sure you provide explanations and jus-
tifications for code changes.
The first test to satisfy is [test]

As tests are given as prompts to the LLM, tests are also added
to the code execution environment. In addition, the LLM response
is also transferred to the code execution environment. We then
check to see if the generated code actually passes the current test
suite. If a test fails, LLM4TDD has an inner loop in which a prompt
providing feedback and asking for code modifications is given to
the LLM, following the prompt template outlined below:

Unit test [testid] is failing. Modify code to pass all the test cases
and provide an explanation for the modification.
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Figure 2: Number and Difficulty of Leetcode Problems

Once all tests pass, we restart the cycle with a new test. The
LLM4TDD process terminates once all tests in the input test suite
pass. If there developer is not satisfied, the LLM4TDD can be con-
tinued by generating more tests.

4 EMPIRICAL EVALUATION
In this section, we investigate the efficacy of LLM4TDD.

4.1 Experimental Data
We conducted our experiments using LeetCode challenges [14].
LeetCode is an online judging platform for coding problems in
which users are given a problem statement, a few example test
cases, and a blank method signature. From there, users can create
a solution and submit it for evaluation against an oracle test suite.
LeetCode includes over 2,300 problems, which are subdivided into
easy, medium and hard difficulty levels. For our study, we selected
a benchmark of 70 problems, with 25 easy, 24 medium, and 21 hard
problems, which have also been used in recent work [17, 20]. All
problems are implemented in Python. In addition, the problems
span both those available before and after January 2022, which is
the cutoff date for training the ChatGPT model used in our study
(ChatGPT-3.5). While all 70 are used for RQ1, due to that nature
of some of our research questions, not all problems were used to
asses every question. Figure 2 shows the breakdown of problems
used for each remaining research question.

We also consider two different sources of tests:
• Manual Test Suites: To provide amanual test suite, we followed
an input space partitioning philosophy to design test cases.

• Automated Test Suites: To provide an automatically generated
test suite, we used the Pynguin tool to generate unit tests.
Both test suites are formatted for capability with the pytest unit

test framework. For most research questions, we use our manually
generated test suite as a default.

Input space partitioning is a test generation strategy in which
tests are generated based on characteristics derived over the input
variables. Each characteristic is broken down into disjoint and
complete blocks that create equivalence classes spanning the input
domain of at least one input variable. As an example, consider
the LeetCode problem 283: Move Zeros, which given an integer
array, the code should move all 0’s to the end while maintaining
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Figure 3: Frequency of Behaviors Encountered in LLM4TDD

the relative order of the non-zero elements. One characteristic is
whether or not the array has zeros in it, which leads to two tests: an
array with zeros and an array without zeros. Another characteristic
is the size of the array, which leads to three tests: an empty array,
an array with one value, and an array with more than one value.

We choose to produce tests following the input space partitioning
strategy in order to (1) have a systematic method to uniformly guide
test generation across all of our evaluation problems, (2) have a test
generation approach that is independent of the implementation, as
we do not know the implementation at the start of the LLM4TDD
workflow, and (3) a recent study highlighted the efficacy of input
space partitioning for industry scale projects [23].

4.2 SetUp and Tool Selection for LLM4TDD
The LLM4TDD process requires a problem to generate code for, a
test suite, a code editor with the ability to execute unit tests and a
Large Language Model. For our problems, we first select the subset
of LeetCode challenges from our dataset that are relevant to help
us evaluate each research question. For each LeetCode problem,
we perform input space partitioning once to establish the manual
test suite that is then used for all research questions. As our code
editor we use the Visual Studio Code IDE and as our LLM we use
ChatGPT. While separate iterations, the entire LLM4TDD cycle for
a LeetCode program is done within the same session.

To document the results, we store the responses from ChatGPT
as well as the ChatGPT session. In addition, we check the generated
code against LeetCode’s backend test suite, which we treat as our
ground truth. This step ensures that the code not only meets the
test cases encountered during the LLM4TDD process, but also per-
formed successfully on the judging test suite provided by LeetCode.

4.3 Results
In this section, we present several research questions, and highlight,
in gray, best practices we found based on our exploration.

4.3.1 RQ1: What is the performance of LLM4TDD?. To measure
performance, we consider both the rate at which LLM4TDD suc-
cessfully produces correct code and the overhead of LLM4TDD in
terms of the ratio of tests to prompts needed to produce correct
code. The number of prompts is a more direct measure of developer
effort for LLM4TDD; however, the number of prompts is tied to the
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1. def test_parentheses_with_letters(self):
2. s = "a(b)c"
3. result = code301(s)
4. self.assertEqual(result, ["a(b)c"])

1. while queue:
2. current = queue.popleft()
3. if is_valid(current):
4. result.append(current)
5. continue
6. for i in range(len(current)):
7. if current[i] in {`(',`)'}:
8. new_str = current[:i] + current[i + 1:]
9. if new_str not in result and new_str not in queue:

10. queue.append(new_str)
11. return result

1. while queue:
2. current = queue.popleft()
3. if is_valid(current):
4. result.append(current)
5.
6. for i in range(len(current)):
7. if current[i] in {`(',`)'}:
8. new_str = current[:i] + current[i + 1:]
9. if new_str not in queue and is_valid(new_str):

10. queue.append(new_str)
11. return result

(a) (b) (c)

Figure 4: Illustration of a Test Changing From Passing to Failing Between Iterations.

number of tests, which varies across problems. Therefore, we focus
on the ratio of prompt to tests. Ideally, the ratio of tests to prompts
would be 1:1, which would mean ChatGPT updates the code and
passes the new test on the first try every time.

Of the 70 problems, our LLM4TDD process is able to successfully
generate correct code, according to our ground truth, for 62 out of
70 problems (88.5%). For the 8 problems that do not pass LeetCode’s
oracle test suite, three produce code that passes our manual test
suite but not LeetCode’s test suite and five gets stuck in a code
repetition pattern. In terms of overhead, our data shows that the
average ratio of the number of tests to the number of prompts is
5:8. To explore why the ratio is not 1:1, Figure 3 displays the rate
at which we encounter different behaviors across the dataset. The
first two bars represent how many LeetCode problems ChatGPT
produces new code updates for versus how many problems Chat-
GPT gets stuck repeating code that require hint prompts. The third
and forth bars illustrates how many LeetCode problems ChatGPT
successfully generates code that passes all tests versus how many
LeetCode problems ChatGPT creates an iteration that causes a pre-
viously passing test to fail that require test failure prompts. For
each behavior, we include a breakdown by difficulty level.

For 27 of our problems (38.6%), ChatGPT falls into a cycle of
repeatedly suggesting the same faulty code. Across the difficulty
levels, 32% of the easy problems, 54.2% of the medium problems
and 28.6% of the hard problems demonstrate this behavior. Upon
investigation of these problems, we discovered that ChatGPT fo-
cuses on making small code modifications between iterations that
do not fundamentally change what the underlying code is trying to
do, as seen in Figure 5 where ChatGPT only removes a variable. In
order to break free from this cycle, manual intervention in the form
of feedback became imperative. Our LLM4TDD process involved
two escalating types of hint prompts. First, we use a simple prompt
indicating that the code has not changed to address the test:

This is the same code as the previous one you generated. Please
carefully review all the tests and modify the code.

Second, if, despite such feedback, the subsequent code generated
remains nearly identical, then we took this as an indication that
ChatGPT requires additional hints on actual implementation details,
such as what data structure(s) to use or whether to insert loops. To
see if ChatGPT could make the adjustments, we provide hints on the
data structures that should be set up. If ChatGPT continued to repeat
the same code suggestion more than 3 times, then we considered
the LLM4TDD process to be unable to provide an answer. Namely,
further hints on the code’s structure would effectively result in the
developer writing the code themselves.

Figure 5: Example of Preference for Minor Adjustments

For 23 of our problems (32.9%), between iterations of LLM4TDD,
ChatGPT would make alterations to the code that cause the newly
introduced test to pass, but would cause at least one of the previ-
ously introduced test cases to now fail. For example, for LeetCode
problem 301: Remove Invalid Parentheses, the initial test seen in
Figure 4 (a) was satisfied by the code generated in Figure 4 (b). How-
ever, in a subsequent iteration, ChatGPT produced the code seen in
Figure 4 (c), over which this test fails. To address this, we would
give our failing test prompt seen in section 3. Across the difficulty
levels, 24% of the easy problems, 58.3% of the medium problems
and 14.3% of the hard problems demonstrate this behavior.

These two issues are the reason our LLM4TDD workflow has an
inner loop in the iteration that accounts for the developer provid-
ing additional hints, leading to the 5:8 test to prompt ratio, with
medium difficulty problems contributing the most to this. LeetCode
medium problems often have a combination of enough algorithm
complexity mixed with problems designed to be a coding challenge
rather than solving a real world problem, that leads to more prompt
interventions. However, the additional prompts are lightweight: the
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Figure 6: Bias Towards Function Name Over Test Case

test failure prompts simply conveys the behavior observed in the
code execution environment and the hint prompt only requires the
developer to think about what data structures might be appropriate.
Overall, with a success rate of 88.5%, LLM4TDD is worth consid-
ering to generate function-level code. However, the best practices
outlined in the remainder of this paper are important to factor in,
as ensuring ChatGPT does not start off solving the wrong problem
is crucial to reduce the effort of LLM4TDD.

4.3.2 RQ2: What attributes of the test cases impact LLM4TDD?.
During our experiments, we started to notice several patterns in
how the test cases impacted the LLM4TDD process. To dig deeper,
we collected 16 problems whose initial attempts to solve using
LLM4TDD caused us to change our test case design practices.

Name-Based Assumptions. One of the key observations we
made is that ChatGPT would make assumptions about the func-
tion’s behavior based solely on the function name in the prompt.
ChatGPT would make these assumptions even if the interpretation
is directly countered by the actual test case. To test this, we mixed
function names from one problem with tests from a different prob-
lem. To illustrate, Figure 6 shows ChatGPT’s response when the test
case in the prompt is for LeetCode problem 768: Max Chunks To
Make Sorted II, but the function name of findMedianSortedArrays
is given in the prompt. In this case, ChatGPT disregards the ac-
tual test and only generates code based on the function name. As
mentioned earlier, ChatGPT is conservative with its incremental
code changes. Thus, when ChatGPT tries to solve the wrong prob-
lem, more prompts are needed to correct the misunderstanding.
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Figure 7: Comparison of Different Test Suite Strategies

However, we did not experience this same issue with test names.
Although ChatGPT also uses test names for context clues, descrip-
tive test names, like def test_n_is_odd(), did not lead to ChatGPT
ignoreing the content of the test.

ChatGPT will ignore the test if a descriptive function name is
used. Therefore, it is best to sanitize the function name to a
generic representation. However, it is ok, and recommended,
to provide descriptive test names.

Ambiguity. Many test cases initially appeared ambiguous to
ChatGPT, where a test case could be valid for multiple actions,
which could result in ChatGPT making an assumption about the
intended functionality of the method that passes the individual test
but is ultimately not the behavior we are trying to generate. As tests
are added, even if the test corrects the original incorrect assumption,
it is possible for multiple tests to continue to present an ambiguous
outline of what behavior the function should have. For example,
for LeetCode problem 768: Max Chunks To Make Sorted II, when
the test array of [5,4,3,2,1] was given with expected output of 1,
ChatGPT initially misunderstood the problem and assumed that the
task was to select the minimum number of the array. Subsequently,
when a new test was introduced for [2, 1, 3, 4, 4] with output
of 4, ChatGPT perceived the task as finding the number of unique
the elements in the array. When the next test was given, [0, 0,

1, 1, 1] with output of 5, ChatGPT persistently produced code to
finding the number of unique the elements in the array, expecting
it to fulfill the new test, even though it was unsuitable.

Unit tests should be clear and unambiguous. It is best to avoid
using input-output pairs for tests that could be used to test
multiple different functions.

4.3.3 RQ3: Are manual or automatic test suites better for LLM4TDD?.
We compared the effectiveness of manually derived test suites using
input space partitioning with automatically generated test suites,
to see if there is a difference in performance. Figure 7 shows the
comparison between the number of prompts to generate correct
code for LeetCode problems for manual and automatically generate
test suites, with the LeetCode problems arranged from easy to hard.

On average, the automatically generated test suites require 2×
more prompts to solve the challenges. This difference grows as
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we move from easy problems to hard problems. For hard difficult
problems (9-15), the automatically generated test suites require
2.5× more prompts. While a manually generated test suite will
require more effort to produce initially, the manual test suites leads
to less effort for conducting LLM4TDD cycles. Besides number of
prompts, the automated test suite can introduce the possibility that
the user misunderstands what behavior the test is checking for,
since they did not personally write the test, which could impact
their comprehension of the code generated in a LLM4TDD cycle
despite the TDD workflow.

Input space partitioning test suites reduce the number of it-
erations in the LLM4TDD cycle, but do require more time to
produce. Overall, the test generation strategy should reflect the
tradeoff desired between effort and developer comprehension.

4.3.4 RQ4: How does the data type of the input and output variables
affect LLM4TDD?. To evaluate this, we considered all combinations
of integer and string inputs with boolean, integer and string outputs.
For each pair, we selected 3 LeetCode challenges, resulting in 18
different coding problems. Figure 8 depicts how many prompts the
LLM4TDD process needs to arrive at the correct solutions, broken
down by combinations of input and output data types. Specifically,
the x axis depicts the data type of the input variables and each
colored bar depicts a different return value data type. The total
number of prompts, depicted by the y axis, is the average across
the problems for that associated combination.

As Figure 8 shows, regardless of the input variable’s data type,
the performance of LLM4TDD is the best for boolean return values,
followed by string return values and lastly integer return values.
At a high level, a boolean return value typically means that there is
a concept the method is checking to see if the input exhibits. As a
result of this simplicity, the LLM4TDD process needs less prompts.

In terms of the data type of the input variables, Figure 8 highlights
that less prompts are needed to solve problems that reason over
string inputs compared to problems that reason over integers inputs.
While strings can take a wide range of forms, there are generally
fewer common string manipulations compared to common integer
manipulations. For instance, for string problems, ChatGPT would
start by generating code that would explore different substrings
of the original input and attempt different concatenations to try
and produce the expected output provided by the test. Often times,
the solution to a LeetCode problem that uses string-based input
variables involve taking these exact same steps to solve the problem.
As a result, there were prompts and thus less LLM4TDD cycles.

In addition, we found that string problems often exhibit less
ambiguity. In particular, string problems often display the charac-
teristic that once code is generated that satisfies one test for an
input space partition block, that code would produce the right be-
havior for all other tests in that block. This consistency allowed
ChatGPT to quickly generate the appropriate solutions, leading
to less LLM4TDD cycles. As an example, consider the LeetCode
problem 816: Ambiguous Coordinates, where the input is a string
and the output is a list of strings. A test highlighting two single-
digit coordinates (s=“34”) demonstrated this pattern, where this test
lead to the generation of code that could handle all two single-digit
coordinates, e.g. s=“56” or s=“00.”
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Figure 8: Comparison of Different Data type Combinations

String methods require less prompts, as they often involve
similar high-level steps to solve. If unique string manipulations
are needed, then that should be represented in the first test.

In contrast, integer inputs often undergo a wider range of ma-
nipulations and tests depicting integer manipulations are often
ambiguous, where the expected output appears that it could be
because of one of several different actions. This is highlighted in
RQ2, where the tests for Max Chunks ToMake Sorted II additionally
appeared to suggest that the problem to be addressed by the code
is to find the minimum value or number of unique elements. On
average, integer inputs require 1.2× more prompts compared to
string inputs. Broken down across the output data types, integer
inputs require 1.30×more prompts for boolean outputs, 1.12×more
prompts for string outputs and 1.10× more prompts for integer
outputs compared to problems with string inputs.

Integers based problems are notably vulnerable to accidentally
ambiguous test cases. In addition, names of tests could help
narrow the space of possible Integer operations.

Irregardless of data types, we did notice two trends. First, Leet-
Code hard problems require a higher number of test cases to reduce
ambiguity, which indicates that ChatGPT struggles to generate
code for complex problems, even for string input, boolean output
problems. Second, ChatGPT exhibited improved performance when
there was a clear correlation between the input and the output of a
test case to real world concepts. For instance, when provided with
input “IV” and the expected output of 4, ChatGPT assumed the code
should translate a Roman numeral into it’s Arabic numeral.

4.3.5 RQ5: How does the test prompt template impact the perfor-
mance of LLM4TDD?. To investigate the impact of test presentation
on performance, we conducted an experiment with 10 LeetCode
problems where we explored two different prompt formats: (1) de-
scriptive tests were provided in plain text without explicit test code
and (2) tests were merged into a single meta-test that is appended
too for each new test. Figure 9 shows the comparison between these
two input formats, along with our default prompt format, in terms
of the number of prompts needed to reach the correct solution.

Text Descriptions. To investigate whether natural language
instructions improve ChatGPT’s ability to iteratively generate code,
we modified our prompt template to textually outline the test. To
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Figure 9: Comparison of Different Test Prompt Formats

illustrate, below is an example of the snippet of a prompt illustrating
our format for textual descriptions of a test case:

The first test is: test1 with input array [1,2] and k = 3, expected
output: 9.

Overall, we found that plain text descriptions performed the
worse, needing on average 2.0× more prompts that the default
prompt and 1.67× more prompts that the meta-test prompt. We
noticed two main issues when ChatGPT tried to satisfy text de-
scriptions of tests. First, with this prompt format, ChatGPT has a
tendency to produce incomplete code and leave to-dos in the com-
ments, which led to us having to give additional guidance prompts
to ask ChatGPT to produce complete code. Second, with this prompt
format, ChatGPT would often hard code tests as consecutive if-else
statements to produce the input-output pair.

Notably, even though tests in plain text were given, ChatGPT
would convert this plain text into test code and then generate
code over it’s test cases. As a result, text-based description insert
an indirect layer that ChatGPT translates from, which introduces
another point in the process where ChatGPT can make mistakes.

While plain text is useful to give contextual information about
forbidden usage of libraries or resources, we do not recom-
mended the use plain text instead of test code.

Appending to a Meta-Test. As mentioned in RQ1, a problem
we encountered moving from one LLM4TDD iteration to the next
is that ChatGPT would sometimes generate code that fails to pass
previously satisfied tests when a new test is added in a subsequent
iteration. Therefore, another test prompt design we investigated
was to create a meta unit test that consolidated multiple unit tests
into a single test case with multiple assert statements. The idea
was to see if outlining a clearly connected series of expected behav-
iors could prevent ChatGPT from forgetting earlier test cases as it
progresses through subsequent iterations.

We found that a meta-test prompt performed better than the
text prompt, but on average required 1.5× as many prompts as
the default prompt. Unfortunately, a big issue is that the meta-test
did not decrease the rate at which we encountered the problem
of new code failing previous tests. Moreover, the new test format
obscures ChatGPT’s interpretation of what test is failing, as there

Figure 10: ChatGPT Mimicing LeetCode

is an inherent order dependency of assert statements within the
consolidated test. In this approach, if one assert statement fails, sub-
sequent ones could be considered unexecuted. The lack of visibility
into which later assert statements succeed or fail after the initial
failing assert statement hindered the ability to provide targeted
hints prompts. For instance, when ChatGPT failed to satisfy the
third assert statement, it was understood that the first two had suc-
ceeded. However, the subsequent prompt given to satisfy the third
assert statement resulted in the failure of later assert statements
that were also failing the previous iteration.

The use of a meta-test is not recommended as the format can
obscure the transfer of knowledge to the LLM and does not
prevent tests passing one iteration and failing later iterations.

4.3.6 RQ6: When the same failing code is repeated for multiple iter-
ations, is the source of these code snippets traceable to solution blogs
or discussion group posts? In an effort to understand the origin of
recurring failing code snippets generated by ChatGPT, we identified
10 LeetCode problems in which we encountered this problem from
before ChatGPT’s data cutoff. The goal was to see whether these
repeatedly failing solutions are linked to commonly posted incor-
rect solutions on public discussion forums like Stack Overflow. Our
idea was that a frequently reoccurring incorrect solution could get
misunderstood as the correct solution. However, we found that the
code snippets produced by ChatGPT exhibited only minor similari-
ties to content on these websites, with most similarities connected
to well known algorithms. Overall, the absence of direct replication
from online sources suggests that ChatGPT may be producing these
recurring failing solutions based on learned patterns, rather than
directly extracting them from existing faulty solutions.

4.3.7 RQ7: How does ChatGPT’s performance differ for LeetCode
problems before and after its knowledge cutoff? As seen in Fig-
ure 10, when prompted with the function name def code234(head:
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Optional[ListNode]) -> bool: for problem 234 on LeetCode with-
out any accompanying test cases, ChatGPT accurately predicted the
intended functionality. Moreover, the test case created by ChatGPT
is the first example given by LeetCode for problem 234. This ini-
tially led to suspicion that the model, with its knowledge extending
up to a certain cutoff, might have the ability to recognize subtle
hints and associate them with specific problemse.

However, a deeper investigation, involving 8 LeetCode problems
among which 4 were before cutoff and 4 were after cutoff, revealed
a guessing pattern. This discrepancy suggests that the initial accu-
rate identification might have been a coincidental success rather
than a systematic capability tied to the model’s knowledge cut-
off. Therefore, ChatGPT’s problem recognition capabilities and its
performance in identifying LeetCode problems is likely context-
dependent and not solely determined by the knowledge cutoff.

The LLM4TDD process should not vary for a problem regard-
less of when that problem entered the public sphere.

5 RELATEDWORK
Program Synthesis. Program synthesis is a mature yet active
research topic.Traditional synthesis approaches often involve dif-
ferent strategies for searching the space of possible programs to
find one that matches the user’s intent [3, 11, 26]. In recent years,
program synthesis techniques utilizing large language models have
been explored [1, 8, 16]. In addition, several LLMs have been devel-
oped specifically for generating code, including Codex [1], Code-
Gen [22], InCoder [5] and PolyCoder [28].

LLM for Test Generation.While our goal is code generation,
our process involves interconnecting LLMs and test cases. There
are several recent bodies of work that focus on using LLMs for
test generation [10, 15, 21, 24]. These bodies of work focus on
producing code with a specific application, test cases, rather than
the implementation code our process focuses on. However, these
techniques are complimentary to our work and could be usedwithin
the LLM4TDD framework as the starting test suite.

Test Driven Development.Most of the research focusing on
test driven development investigates the impact it has on the qual-
ity of software produced, with several studies finding that TDD
leads to better code at the expense of the development cycle taking
more time [6, 9]. A study conducted at IBM additionally found that
developers felt that they better understood the system’s design
when using TDD compared to other development cycles and that
developers felt that their code was more readable [19]. TDD has also
been evaluated in an academic setting, in which students reported
feeling as if they better understood their programs and this also
felt more confident in making changes to their code [2].

6 CONCLUSION AND FUTUREWORK
This paper introduces LLM4TDD, an incremental development
process in which the user guides code generation by gradually
presenting unit tests to the LLM for the LLM to generate code
to pass. To evaluate LLM4TDD, we conducted an empirical study
using LeetCode challenges. The results of this study led to several
best practices for LLM4TDD, such as sanitizing method names and
reducing ambiguity in test with careful consideration for integers.

As future work, we plan to explore how LLM4TDD performs over
other LLMs, such as Codex, and languages, such as Java.
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