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Abstract—Writing declarative models has numerous benefits,
ranging from automated reasoning and correction of design-
level properties before systems are built, to automated testing
and debugging of their implementations after they are built.
Alloy is a declarative modeling language that is well-suited for
verifying system designs. A key strength of Alloy is its scenario-
finding toolset, the Analyzer, which allows users to explore all
valid scenarios that adhere to the model’s constraints up to a
user-provided scope. Despite the Analyzer, writing correct Alloy
models remains a difficult task, partly due to Alloy’s expressive
operators, which allow for succinct formulations of complex
properties but can be difficult to reason over manually. To further
add to the complexity, Alloy’s grammar was recently expanded to
support linear temporal logic, increasing both the expressibility of
Alloy as well as the burden for accurately expressing properties.
To address this, this paper presents μAlloyτ , an extension to
Alloy’s mutation testing framework that accounts for the newly
introduced temporal logic, including updating μAlloyτ ’s test
generation capability to produce temporal test cases. Exper-
imental results reveal μAlloyτ is efficient at generating and
checking mutations and μAlloyτ ’s automatically generated tests
are effective at detecting faulty temporal models.

Index Terms—Alloy, Mutation Testing, Test Generation

I. INTRODUCTION

Our lives are increasingly dependent on software systems.

However, these same systems, even the most safety-critical

ones, are notoriously buggy. Therefore, there is a growing

need to produce reliable software while keeping the cost

low. One solution is to make use of declarative modeling

languages to help improve software correctness. Alloy [17]

is one such popular modeling language. A key strength of

Alloy is the ability to develop models in the Analyzer, an

automated analysis engine that lets users explore behavior

enabled by their models. To achieve this, the Analyzer invokes

off-the-shelf Boolean satisfiability (SAT) solvers to search for

scenarios, which are assignments to the sets of the model

such that all executed formulas hold. As output, the Analyzer

produces a collection of scenarios the user can explore. Alloy

models and their corresponding scenarios have been used

to validate software designs [21], [23], to test and debug

code [14], [22], to repair program states [25], [34] and to

synthesize security attacks [29], [4], [6].

Unfortunately, the model itself needs to be correct to gain

the many benefits that arise from utilizing software models.

While the Analyzer enables automated analysis of models,

the Analyzer only supports ad-hoc techniques for testing

the correctness of the model itself, such as enumerating all

scenarios and visually inspecting them for issues, which is

both time-consuming and error-prone. To address this gap,

prior work created AUnit to give users a way to systematically

check for the correctness of Alloy models [28]. In the context

of Alloy’s declarative execution, in which there is no notion of

imperative control flow, and the SAT solver finds all satisfying

scenarios in one execution, AUnit defines: (1) what is a test

case, (2) how is a test case executed and its pass/fail outcome

resolved and (3) what are different types of coverage criteria.

With the existence of AUnit, several traditional imperative

testing practices were ported to Alloy, including mutation

testing, fault localization, and repair [30], [31], [32].

μAlloy is the mutation testing framework, which generates

mutants, generates a mutant-killing test suite, and performs

traditional mutation testing. To generate mutants, μAlloy first

defines a series of mutation operators for Alloy’s first-order

relational logic that focus on making manipulations to Alloy

constraints at the abstract syntax tree (AST) level. During

the mutation generation process, μAlloy takes advantage of

Alloy’s expressive logic and declarative execution environment

to proactively prune equivalent mutants. Moreover, for all non-

equivalent mutants, μAlloy generates and stores an AUnit test

case that kills the mutant. To perform mutation testing, μAlloy

takes the set of mutants generated, an Alloy model, and an

AUnit test suite, and as output, reports a mutation score that

coveys how many mutants the test suite successfully kills.

μAlloy is developed for Alloy 5, which is prior to the recent

incorporation of linear temporal logic into Alloy [10]. As

part of providing support for linear temporal logic, Alloy’s

structural constraints were updated to allow users to specify

mutable sets of the model that can change between states.

As a result, Alloy scenarios were also updated to explicitly

outline multiple states rather than a single state. These changes

increase the broader applicability of Alloy, which can now

easily reason over the dynamic behavior of a system in

addition to the structural behavior of a system. However,

AUnit, and the various testing frameworks that utilize AUnit,

were not designed to handle temporal constraints and state-

based scenarios.

This paper introduces μAlloyτ , an expansion of the μAlloy

framework that updates both AUnit and μAlloy to handle

temporal logic. Importantly, μAlloy is used as a sub-process

in both the fault localization (AlloyFL) and repair (ARepair)

techniques that also utilize AUnit test cases. Therefore, ex-

tending μAlloy’s framework to support linear temporal logic
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(a) (b)

1. var sig File { var link : lone File }
2. var sig Trash in File {}
3. var sig Protected in File {}
4. pred ProtectedNotTrashed {
5. no Protected & Trash --incorrect
6. --always no Protected & Trash --correct
7. }
8. run ProtectedNotTrashed for 3

1. val Test1 {
2. some disj F0, F1, F2: File {
3. File = F0 + F1 + F2, File' = F0 + F1 + F2
4, File'' = F0 + F1 + F2
5. Protected = F2
6. Protected'' = F1 + F2, Protected'' =F1 + F2
7. Trash = F1
8. Trash' = F1 + F2, Trash'' = F1 + F2
9. link = F0->F2 + F2->F0

10. !ProtectedNotTrashed[]
11. }}
12. run Test1 for 3 but 2 steps

(c) (d)

F0 F1
Trash

F2
Protected

link

F0 F1
Trash, Protected

F2
Protected

link

(State 0) (State 1)
0 1

Fig. 1. Faulty Alloy Model of a File System Trash Can and Fault Revealing AUnit Test Case

opens the door to updating AlloyFL and ARepair.

In this paper, we make the following contributions:

Temporal Mutant Operators: We create mutation operators

for temporal logic and dynamic signatures and relations.

Temporal Test Generation: We define test cases that reason

over multiple states and provide a translation for turning state-

based counterexamples into tests.

Evaluation: We evaluate our mutation testing framework and

the quality of test suites produced by our test generation

strategy using a benchmark of temporal Alloy models.

Open Source: We release an implementation of our frame-

work that is built on top of version 6.0.0 of the Analyzer at

https://github.com/MuAlloyT/mualloy_temporal.

II. BACKGROUND

In this section, we describe key concepts of Alloy, AUnit,

and μAlloy.

A. Alloy and AUnit

Figure 1 (a) displays a faulty temporal model of a file system

trash can from the Alloy4Fun benchmark, which is comprised

of real-world faulty models from new Alloy users [5]. Signa-

ture paragraphs introduce named sets and can define relations,

which outline relationships between elements of sets. Line 1

introduces a named set File and establishes that each File

atom connects to zero or one (lone) File atoms through

the link relation. Lines 2 and 3 introduce the named sets

Trash and Protected as subsets (in) of File. Signatures

and relations can be declared mutable (var), which means that

the elements of these sets can vary across different states in the

same scenario. In our example, all 3 signatures (File, Trash,

and Protected) and the one relation (link) are mutable.

Predicate paragraphs introduce named first-order, linear

temporal logic formulas that can be invoked elsewhere. The

predicate ProtectedNotTrashed uses empty set (‘no’) and

set intersection (‘&’) to incorrectly attempt to establish that a

protected file is never sent to the trash. However, since the

signatures are mutable, the incorrect version is true as long as

no protected files are in the trash for the first state but does not

require the constraint to be true in every state. To correct this,

the linear temporal operator always can be appended to the

start of the predicate. Commands indicate which formulas to

invoke and what scope to explore. The scope places an upper

bound on the size of all signature sets and the number of state

transitions. The command on line 8 instructs the Analyzer to

search for an assignment to all sets in the model using up to

3 File atoms and up to 10 state transitions by default.

Figure 1 (b) - (d) shows a fault revealing AUnit test case

depicted textually (b) and graphically (c) - (d). An AUnit test

case has two components: (1) a valuation, which outlines a

scenario, and (2) a command, which outlines the formulas

under test. A test case passes if the valuation is a valid instance

for the command. Therefore, AUnit test cases allow the user to

explicitly check if a specific scenario is correctly generated or

prevented by the formulas under test. The graphical depiction

is what the Analyzer would visually present to the user if the

textual valuation in Figure 1 (b) is executed.

For the textual representation, lines 2 - 9 outline the valua-

tion using existential quantification (some) and the disjoint

operator (disj) to define unique elements used to assign

values to the sets of the model (File, link, Trash, and

Protected). To convey changes to mutable set of the model,

the prime operator (‘’’) is used The prime operator allows a

user to refer to future states of an expression, e.g. e’ refers

to the value of e shifted by one state further down the time-

line. Line 10 outlines the command, which specifies that the

formula under test is the predicate ProtectedNotTrashed
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TABLE I
ALLOY 5 MUTANT OPERATORS.

Operator Description
MOR Multiplicity Operator Replacement
QOR Quantifier Operator Replacement
QORU Quantifier Operator Replacement with Unary
UOR Unary Operator Replacement
BOR Binary Operator Replacement
LOR List Operator Replacement
UOI Unary Operator Insertion
BOD Binary Operator Deletion
UOD Unary Operator Deletion
LOD Logical Operand Deletion
PBD Paragraph Body Deletion
BOE Binary Operand Exchange
IEOE Imply-Else Operand Exchange

and that the valuation is expected to be invalid (‘!’). Line

12 is separately an Alloy command to execute the test case.

In Alloy, state-based scenarios are all lassos, meaning that the

last state either loops back to a previous state or loops to itself.

For our example test case, the loop state is a self-loop on state

1, as seen in the timeline of states at the bottom of Figure 1.

To ensure only these explicitly outlined lasso is possible, the

execution command uses a scope of “but 2 steps.”

B. μAlloy

μAlloy introduces mutation testing for version 5.0 and

earlier of Alloy [27], [31], which focuses on relational, first-

order logic and set theory.

1) Mutant Generation and Automated Test Generation:
μAlloy applies mutation operators to Alloy AST nodes. The

currently supported mutation operators can be seen in Table I.

Replacement mutant operators will swap logical operators

that fall into the same classification in Alloy’s grammar, e.g.

replacing set intersection “A & B” with set union “A + B.”

Separately, QORU replaces a quantified formula with a set

multiplicity formula that physically shares the same operator

spelling, e.g. “no a : A | B” becomes “no A.” Exchange

mutant operators will swap the order of operands for logical

operators with multiple operands, e.g. “A & B” mutates to “B
& A.” Insertion mutant operators will add logical operators,

e.g. inserting the reflexive transitive closure operator mutates

“A & B” to “*A & B.” Deletion mutant operators will delete

logical operators, e.g. deleting the empty set operator in “no
A & B” results in the mutant “A & B.”

For every node in the AST, μAlloy applies all applicable

mutation operators one at a time to that location, generating a

series of first-order mutants. Then, μAlloy stores a collection

of mutated models that (1) successfully compile and (2) are

not equivalent to the original. Unlike mutation testing for

imperative languages, μAlloy is able to systematically check

at generation if a mutant is equivalent to the original model.

In Alloy, check commands search for counterexamples, a

scenario in which the invoked formulas fail to hold true.

Therefore, to determine if a mutant is equivalent, μAlloy

executes a command of the form:

check {OriginalFormula <=> MutatedFormula}

which uses the bi-conditional operator (<=>) to assert that

the mutated and original formulas should never differ in

their truth values. If a counterexample is found, then μAlloy

determines the mutant is not equivalent and saves the mutant.

In addition, μAlloy will automatically turn the counterexample

into an AUnit test case. The end user then labels the converted

counterexample as “valid” or “invalid” to provide the oracle

for the test case. If no such counterexample can be found,

then μAlloy determines the mutant is equivalent and prunes

the mutant. In the end, the mutant generation process outputs

(1) a set of all non-equivalent mutants and (2) a test suite that

is capable of killing all non-equivalent mutants.

2) Mutation Testing: To perform mutation testing, μAlloy

takes as input an Alloy model, an AUnit test suite, and a set of

mutants. As output, μAlloy reports the mutation score, which

displays the ratio of the number of killed mutants to the total

number of mutants. μAlloy considers a mutant to be killed if

a test case execution passes the mutant model and fails on the

original model or vice versa. This concretely means that to

kill a mutant; the test suite needs to contain a test case that

is satisfiable over one model and unsatisfiable over the other.

μAlloy has a few runtime optimizations, such as stopping once

a test case is able to distinguish the difference between the

mutant and the original model.

C. Impact of μAlloy

Since μAlloy creates tests to kill non-equivalent mutants

as you generate the mutants, mutation testing is used largely

for its automated test generation capabilities. The process of

encoding a scenario to spot check a predicate has been an

ad hoc testing practice in Alloy for over a decade. Mutation

testing simply gave the user a way to get a nice variety of

these “spot checks” automatically. In addition, mutation testing

also plays an active role in several of the automated repair

techniques for Alloy. While most repair techniques suffer

from scalability issues that prevent them from being used in

practice, mutation testing is the core behind the only repair

technique that currently scales [35]. The technique makes a

tradeoff in robustness in order to give quick feedback that

is intended to serve as guidance over providing a guaranteed

patch. This is currently used in an educational setting to make

suggestions to users developing models in Alloy4Fun [20].

III. TECHNIQUE

This section describes the updates made to μAlloy to

provide mutation testing for temporal models. We outline the

changes to mutation operators, how we create new equivalence

checks for variable mutant operators, and how we update

AUnit test cases to handle state-based scenarios.

A. Mutation Generation

To support linear temporal logic, Alloy’s grammar was

extended to support the temporal operators shown in Figure 2

in green. To account for these changes, μAlloyτ adds new

mutation operators and updates several existing operators, as

outlined in Table II. First, μAlloyτ establishes 4 new mutant
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TABLE II
NEW AND UPDATED MUTANT OPERATORS FOR ALLOY 6

New Ops Description
VOI Variable Operator Insertion
VOD Variable Operator Delection
POI Prime Operator Insertion
POD Prime Operator Deletion

Updated Ops Description
UOR Unary Operator Replacement
BOR Binary Operator Replacement
UOI Unary Operator Insertion
BOD Unary Operator Insertion
UOD Unary Operator Deletion
BOE Binary Operand Exchange

operators. VOI inserts the var keyword on any originally

non-mutable signatures and relations. Likewise, VOD deletes

the var keyword for any originally mutable signature(s) and

relation(s). These two mutant operators effectively flip whether

a given signature or relation is allowed to change values

between states in the same scenario. Second, POI and POD
insert and delete the prime operator (’). As an optimization,

we only look to apply POI mutant operators on any expression

encountered that is mutable, as applying the prime operator to

a static expression will always produce an equivalent mutant.

Second, μAlloyτ updates 6 existing mutant operators related

to unary and binary expressions and formulas, which account

for temporal operators that fit the mold of previously existing

grammar structures from Alloy 5 and earlier. Some of these

updates are straightforward, where the mutant operator only

needs to be made aware of the new temporal operators, e.g.

UOR is made aware that always, eventually, after,

before, historically, and since form a temporal opera-

tor group and when one is encountered, UOR should create 5

mutants, replacing the original unary temporal operator with

all of the remaining five temporal operators.

For other mutant operators, the updates were more involved

as a broader context is needed to determine when to apply

the mutant operator to a relevant AST node, e.g. UOI looks

to insert the 6 unary temporal operators around any formula

encountered, which is any Alloy constraint that evaluates to

true or false. Alloy constraints can alternatively be expressions

that evaluate to sets. In that case, UOI looks to insert the

multiplicity unary operators (no, one, lone, some) but does

not insert the temporal operators. This is because the temporal

operators will only compile when inserted on a formula, while

the multiplicity operators will only compile when inserted

on an expression. While we do preemptively head off some

situations in which creating a mutant will always result in

a compilation error, for all mutants generated, μAlloyτ does

check if the mutant compiles. If not, the mutant is discarded.

B. Equivalence Checking

In addition to ensuring the mutant compiles, as mentioned

in Section II-B1, μAlloyτ follows μAlloy workflow to check

if the mutated model is logically equivalent to the original

model. While detecting equivalent mutants is a hard problem

to solve in imperative languages, for most mutants, we can

check if a mutated formula is equivalent to the original formula

using the bi-conditional operator. For example, consider the

following UOI generated mutant, which inserts the temporal

operator always due to encountering the unary formula “no

Protected & Trash” node in the AST:

pred MUTATED { always no Protected & Trash }

μAlloyτ will produce the following assertion checks for

equivalence:

equiv:
check { ProtectedNeverTrashed[] <=> MUTATED[] }

This check will produce a counterexample that is equivalent to

the AUnit test case outlined in Figure 1 (b) - (d). As a result,

μAlloyτ will determine that this UOI mutant is non-equivalent

and keep the mutant.

Two of the new temporal mutant operators, Variable Oper-

ator Insertion (VOI) and Variable Operator Deletion (VOD),

require a modified process to check equivalence, as the oper-

ators are applied to the signature paragraphs of a model and

cannot directly be checked using the biconditional operator. To

check for equivalence for VOI and VOD, μAlloyτ asks the

Analyzer to produce a scenario in which the mutated signature

or relation changes between at least two states, as this will

always kill a VOI or VOD mutant. For example, consider the

following VOD generated mutant:

sig File { var link: lone File }

In the mutated model, the File signature can no longer vary

its assigned values between states of a scenario. To check if

this mutant is equivalent, μAlloyτ will create an intermedi-

ate model in which the signature File is mutatable. Then,

μAlloyτ will pass the following command to the Analyzer

over the intermediate model:

equiv: check { File = File' }

If a counterexample is found, then the VOD mutant is

non-equivalent, as the counterexample will contain different

assignments to File for at least two states, which will only be

possible for the version of the model that contains a mutable

File signature. Given the VOI or VOD operator, this will

either be the mutant model or the original model but not both.

This check also lets us catch if a VOI or VOD operator

happens to be equivalent, which could be possible if, for

instance, there are some additional constraints in the model

that end up restricting the behavior of a mutable signature or

relation such that it effectively cannot change.

C. Temporal Test Generation

When the equivalence check returns a counterexample,

not only is the mutant non-equivalent, the counterexample

generated can be turned into a mutant-killing test case. As a

result, μAlloyτ is able to simultaneously generate mutants and

a test suite that will achieve a 100% mutation score. Prior to

μAlloyτ , AUnit test cases only reasoned over a static scenario.

With Alloy 6, scenarios can now natively be stateful, which
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sigDecl ::= [var] [abstract] [mult] sig name,+ [sigExt] fieldDecl,* [block]
fieldDecl ::= [var] decl

expr ::= ... expr '
unOp ::= ! | not | no | mult | set | # | ~ | * | ^ | always | eventually | after | before | historically | once
binOp ::= || | or | && | and | <=> | iff | => | implies | & | + | - | ++ | <: | :> | . | until | releases | since

| triggered | ;

Fig. 2. Linear Temporal Logic Grammar Expansion

means that how AUnit supports the declaration of a valuation

needs to be updated. To handle the dynamic changes, we

update AUnit test cases to include changes between states of

the prime operator (‘’’). To illustrate, consider the following

segment from the textual test case in Figure 1 (b):

5. Protected = F2
6. Protected' = F1 + F2, Protected'' = F1 + F2

The initial state is outlined in Protected, the second state is

outlined in Protected’, and the final loop state is outlined in

Protected”. Because the final loop state is required to form

a lasso, AUnit test cases outline 3 states, of which only two are

unique. The last state, the loop state, will always be equivalent

to some earlier state. The counterexample being covered will

specify which state to repeat as the loop state.

In addition, we update the Alloy command that executes

a test case to explicitly outline how many state transitions

are present using the steps keyword. The N steps keyword

tells the Analyzer to search for scenarios with up to N state

transitions, including the looping transition. The use of steps

is necessary to ensure that the AUnit test case outlines one

specific scenario and not multiple scenarios. In Alloy, the

default number of steps considered is 10, which means for

any test valuation outlining less than 10 steps, it is possible

for the Analyzer to find a satisfying scenario with the same

state transitions outlined in the test, but after the outlined state

transitions, continue on to other transitions not outlined. For

example, for our test case in Figure 1 (b) - (d), if the Alloy

execution command on line 12 did not contain the constraint

“but 2 steps” in its scope, then the following can be a

scenario found as a solution when the command is executed:

F0 F1

F2

link

F0 F1

F2

link

(State 2) (State 3)

where state 3 extends the scenario in Figure 1 with an

additional state transition. By appending “but N steps” to

the execution command, we eliminate the possibility of acci-

dentally producing scenarios that further extend the outlined

test case and ensure a test execution produce only to explicilty

outlined scenario.

Besides producing a test suite that will achieve a 100%

mutation score, another key benefit to generating tests over

any non-equivalent mutant is that μAlloyτ can more directly

help the user explore if their model is faulty. To illustrate,

the equivalence check for the UOI mutant outlined earlier in

Section III-B will produce the scenario from Figure 1 (b) - (d),

which can then be labeled by the end user as invalid. This test

case kills the UOI mutant, as the test case will be satisfiable for

the original model and unsatisfiable for the mutated model. In

addition, this test case also reveals to the user that their model

is faulty, as the end user should expect that a protected file can

never, at the same time, be in the trash. However, since the

test case fails the original model, μAlloyτ will actually reveal

to the user that this except invalid behavior is actually allowed

by their current model. The user can then use the mutant to

help debug and correct the faulty behavior. In this case, the

user can apply the mutant itself to correct the faulty model.

D. Mutation Testing

μAlloyτ leaves μAlloy’s mutation testing process intact, as

AUnit test case execution, and thus the process for determining

if a mutant is killed, does not change due to the additional

presence of state-based scenarios.

IV. IMPLEMENTATION

This section outlines important implementation details of

μAlloyτ , which is released as a command line tool that runs

on top of the Analyzer v.6.0.0.

A. Mutant Operator Subgroups

μAlloyτ uses AUnit’s parser that breaks down an Alloy

modeling into its corresponding abstract syntax tree (AST).

The built-in Alloy parser contains only enough information

to facilitate a translation from Alloy’s logic to an equivalent

conjunctive normal form formula, which is needed for the

backend SAT solver. However, to perform mutation testing,

we need more nuanced information, e.g. it is beneficial for us

to know that “no Protected & Trash” is a unary formula
which will evaluate to either true or false while “Protected

& Trash” is a binary expression which will evaluate to a set.

While μAlloyτ distinguishes between the type of constraint,

expression, or formula, Alloy only distinguished between the

operator arity, e.g. “Protected & Trash” would be stored

as a binary formula since “& ” is a binary operator.

Each node type in μAlloyτ ’s AST additionally stores infor-

mation about the group of operators for the purpose of creating

a balance between the number of mutants generated and the

breath of a particular mutant operator. For example, a unary

formula can involve any of the following valid unary operators

from Alloy’s grammar:

unOp ::= ! | not | no | lone | one | some | always |
eventually | after | before | historically | once

which are broken down into the following groups for the

purpose of mutation testing:
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negation ::= ! | not
multiplicity ::= no | lone | one | some

temporal ::= always | eventually | after |
before | historically | once

These groups impact how mutant operators are applied, often

by limiting the scope. For instance, for UOR, replacements

are only done with operators from the same group. This

tradeoff ensures we generate mutants that could be realistic

mistakes a developer might make, such as using the wrong

multiplicity operator, instead of bloating the number of mu-

tants we generate with unlikely mistakes, such as putting a

multiplicity operator when the developer should have put a

temporal operator.

B. Mutation Visitor and Mutation Operators

To traverse over the AST and apply relevant mutation

operators, μAlloyτ uses a Visitor pattern. For each type of

node encountered in the AST, μAlloyτ ’s mutation visitor

overrides the visit method and determines which mutation

operator rules to invoke by considering the type of node and

information about the node’s parent in the AST. For instance,

if a signature node is encountered, μAlloyτ ’s mutation visitor

applies the MOR, VOI, and VOD mutant operator rules to that

location. Besides making different nodes aware of temporal

mutants, μAlloyτ significantly changes the UOI operator

as mentioned in Section III-A. Correspondingly, μAlloyτ
changes the conditinos under which this operator is applied

to an AST node. In μAlloy, the UOI operator only inserted

closure (^ and *) and transpose (�) operators on any unary

expression node encountered. This meant the set multiplicity

constraints (no, lone, one, and some) were never inserted.

This was a design choice made for μAlloy, as inserting the

set multiplicity constraints does take a unary expression and

transforms it into a unary formula, which frequently causes

a compilation error. However, our experiments for μAlloyτ
found that broadening the UOI operator to have a wider range

of insertions was beneficial for detecting more faulty models.

V. EVALUATION

We evaluate μAlloyτ over two benchmarks. First, we ex-

plore the performance over a benchmark of temporal Alloy

models released with the update that added linear temporal

logic support [10]. Second, we consider a collection of real-

world faulty temporal Alloy models pulled from Alloy4Fun

exercises. Alloy4Fun [20] is an online learning platform for

Alloy whose exercises have users attempt to write predi-

cates for various models, which are checked against a back-

end oracle solution. Submissions to Alloy4Fun have been

anonymized and made into an open-source benchmark [5]. For

our evaluation, we focus on the two models from Alloy4Fun

that include temporal logic (Trash and Train) that together

produce the 3,669 submissions across 37 different exercises:

20 predicates for Trash and 17 for Train. From there, we

remove any duplicate submissions. This results in 2,307 Trash
models and 683 for Train models.

TABLE III
SIZE OF EVALUATION MODELS.

Model #Sig #Rel #Var #Cls #Scp #M
buffer 4 2 31 1060 3 1
leader 2 4 65 2424 4 1
l_events 3 4 70 3705 4 1
trash 2 0 7 154 3 1
train 7 3 49 880 5 683
trash 3 1 19 194 3 2,307

Table III gives an overview of the size of each model.

Column #Sig is the number of signatures, column #Rel is

the number of relations, and column #Pred is the number

of predicates. Columns #PVar and #Cls are the number of

primary variables and clauses generated for the SAT solver

when the empty command is run on the model. Column

Scp conveys the scope used in the evaluation. Lastly, column

#M shows how many model variants are considered. For the

Alloy 6 models, there is only one version. For the Alloy4Fun

benchmark, this is the number of unique faulty submissions.

We address the following research questions:

• RQ1: What is the overhead of performing mutation

testing of temporal models?

• RQ2: How often are mutants of temporal models equiv-

alent mutants?

• RQ3: How effective is a mutant-based test suite at

detecting faulty temporal models?

All experiments are performed on Linux Ubuntu 20.04 LTS

with 1.8GHz Intel i7 CPU and 16 GB RAM.

A. RQ1: Overhead of μAlloyτ

Table IV shows μAlloyτ ’s performance. Column Model
reflects the model under evaluation. For the Alloy4Fun models,

all faulty submissions for the same predicate are combined

together in a single row. For each metric, we present the

average across all submissions for the associated exercises, in

addition to the minimum and maximum value encountered.

The next 4 columns relate to performance metrics for the

mutation generation portion of μAlloyτ . Column #E shows

the number of equivalent mutants, #NE shows the number

of non-equivalent mutants, and #Test shows the number of

unique test cases. Lastly, #T[s] displays the total generation

time in seconds. Since the counterexample that outlines the

mutant killing test case is the byproduct of checking whether

a mutant is equivalent, we do not separate our test generation

time from the overall mutant generation time. The next two

columns relate to performance metrics for the mutation testing

portion of μAlloyτ . Column Score displays the mutation score

as a percentage out of 100, and column T[s] displays the total

generation time in seconds. By design, μAlloyτ ’s test suite

produces a mutation score of 100; therefore, we do not present

a range for the Score column. As a sanity check, we confirm

that all test suites do achieve this score.

Across all models, the time it takes to generate mutants

correlates with the total number of mutants explored. This

is expected, as for every well-formed mutant that compiles,

μAlloyτ calls the SAT solver to check for equivalence, which
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TABLE IV
PERFORMANCE RESULTS FOR μALLOYτ

Model
Mutant Generation Mutation Testing

# EQ #Non-EQ #Test Time [s] Score Time[s]
Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max

buffer 229 202 93 129.75 100 14.20
leader 360 297 115 618.53 100 40.80
levents 351 335 170 953.62 100 91.24
trash 134 133 48 17.95 100 4.89
trash1 13 1 34 29 16 49 17 13 29 4.38 0.19 13.97 100 0.59 0.31 1.12
trash2 11 1 43 39 16 61 22 13 34 4.77 0.20 22.83 100 0.81 0.30 1.47
trash3 5 2 8 37 25 51 26 19 34 1.32 0.68 1.89 100 0.83 0.51 1.14
trash4 14 2 44 51 25 103 33 18 61 4.19 0.65 31.57 100 1.28 0.49 3.75
trash5 11 1 48 45 16 86 29 13 56 3.05 0.20 57.94 100 1.09 0.30 3.68
trash6 17 1 80 53 16 105 34 13 61 12.58 0.21 696.59 100 1.38 0.30 4.51
trash7 7 2 17 43 25 58 29 19 44 1.94 0.64 4.96 100 0.99 0.50 1.80
trash8 15 1 51 58 16 98 40 13 69 11.20 0.21 961.91 100 1.58 0.30 3.93
trash9 11 2 32 51 23 81 32 16 54 3.75 0.70 14.10 100 1.24 0.46 2.46
trash10 16 1 93 52 16 109 33 13 63 7.37 0.19 234.05 100 1.32 0.31 3.48
trash11 8 2 38 52 25 88 32 17 59 1.93 0.70 5.19 100 1.30 0.50 3.10
trash12 20 1 76 62 16 100 41 13 63 16.83 0.19 451.53 100 1.69 0.31 3.97
trash13 22 1 52 52 16 82 33 13 53 17.46 0.21 120.16 100 1.28 0.33 2.35
trash14 10 1 52 61 16 109 38 13 74 2.75 0.21 23.22 100 1.65 0.33 4.27
trash15 13 1 41 45 16 67 29 13 45 2.72 0.21 6.30 100 1.03 0.32 1.95
trash16 17 5 54 49 23 77 30 16 50 6.84 1.14 24.25 100 1.21 0.43 2.50
trash17 24 1 73 57 16 107 36 13 80 20.12 0.21 483.66 100 1.53 0.33 4.60
trash18 15 1 52 61 16 108 41 13 73 19.40 0.20 629.71 100 1.75 0.31 4.70
trash19 14 5 49 59 36 99 40 22 58 11.87 1.44 105.64 100 1.66 0.69 3.94
trash20 9 1 35 63 16 78 43 13 56 44.33 0.20 1270.18 100 1.92 0.32 2.92
train1 128 117 148 191 167 210 104 91 120 20.99 12.31 50.18 100 14.98 11.60 18.45
train2 127 122 145 191 173 210 106 95 113 16.44 12.36 32.78 100 15.20 12.12 17.38
train3 139 117 208 190 167 245 102 91 134 22.47 11.96 419.64 100 14.60 11.34 22.53
train4 133 117 195 189 167 237 104 91 137 22.80 13.43 194.63 100 14.67 11.71 22.75
train5 146 117 279 235 167 346 133 91 214 21.71 13.40 74.33 100 22.70 11.56 48.12
train6 159 117 252 197 167 255 105 91 143 20.92 12.52 53.25 100 15.70 11.79 25.73
train7 135 123 169 204 173 229 113 93 127 19.29 15.26 48.72 100 17.00 11.96 20.99
train8 148 124 188 239 185 295 137 97 191 148.36 16.73 1065.64 100 24.03 13.77 39.16
train9 143 122 193 209 182 249 118 96 149 52.01 12.83 848.29 100 18.11 13.26 27.23
train10 127 121 133 203 192 215 109 106 113 15.66 14.55 16.77 100 16.15 14.84 17.45
train11 136 130 147 212 202 225 117 111 126 26.80 22.43 30.03 100 18.15 16.81 20.00
train12 117 117 117 167 167 167 91 91 91 13.44 13.44 13.44 100 11.65 11.65 11.65
train13 133 128 144 217 194 232 119 105 130 28.07 16.36 56.62 100 18.90 14.97 21.88
train14 142 126 188 242 204 265 141 114 164 23.45 16.89 42.71 100 24.87 17.75 31.13
train15 138 125 178 203 191 229 114 103 130 21.61 15.78 75.44 100 17.14 14.76 21.76
train16 128 126 129 228 215 244 136 125 144 465.26 56.25 1119.94 100 22.57 19.33 24.93
train17 153 117 227 197 167 223 108 91 132 67.96 13.62 300.92 100 15.71 11.69 20.72

AVG 89.71 56.73 108.43 134.15 93.78 156.54 74.17 53.46 93.89 71.36 8.07 259.54 100 11.69 6.45 12.80

inflates the runtime. However, even with the overhead of

checking for equivalent mutants, μAlloyτ ’s mutant generation

runtime is not prohibitive. For the larger Alloy 6 models,

μAlloyτ takes, on average, 1.2 minutes to generate mutants,

with the two largest models (leader anf levents) taking over

10 minutes. For the Alloy4Fun models, μAlloyτ ’s mutant

generation time is, on average, 9.94 seconds across all the

trash variants and 59.25 seconds across all the train variants.

There are also a few Alloy4Fun submissions, 65 (0.03%), that

take over 2 minutes to generate mutants. This spike in runtime

occurs on models where the SAT solver struggles to efficiently

execute the equivalent mutant checks. However, this issue is

not commonly encountered across the benchmark.

In contrast, there is a very minimal overhead for performing

mutation testing. Across all models, on average, the mutation

testing process accounts for only 26% of the total runtime

(mutant generation time combined with mutation testing time).

For the Alloy 6 models, the mutation testing runtime averages

11.55 seconds. For the Alloy4Fun models, μAlloyτ ’s mutation

testing time is, on average, 18.94 seconds for the trash

variants and 37.99 seconds for the train variants. Past work

concluded that AUnit test cases have negligible execution

overhead [27], [33], which is further supported by the observed

low mutation testing runtimes, as the mutation testing process

is predominately executing AUnit tests.

The small collection of models released with the Alloy

6 update is of a larger scale. Each model comprises of

multiple predicates. In contrast, the Alloy4Fun benchmark

models all consist of just the faulty predicate along with the

high-level model structure. As a result, it is expected that

the mutant generation and mutation testing runtimes for the

Alloy 6 release models would be larger, as observed. Within

the Alloy4Fun benchmark, the train model is, on average,

more complex than the trash model, with notably larger oracle

solutions for the predicate exercises. The performance results

for μAlloyτ highlight that the overhead of μAlloyτ is related

to the size of the model, which makes sense, as a longer

model physically means there are more overall mutants to

produce. However, the results in Table IV highlight that even

for complex models, μAlloyτ ’s overhead is reasonable.
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Altogether, the results demonstrate that mutation testing is

relatively inexpensive for temporal models. Given the fact that

this overhead includes producing a test suite that will always

achieve a 100% mutation score, μAlloyτ is a valuable tool for

users to test their models. This is especially true for novice

users, given the ability of this test suite to detect faults in

models, as seen in Section V-C.

B. RQ2: Equivalent Mutant Rates

μAlloyτ is able to detect how often a valid mutant, a mutant

that successfully compiles, is equivalent to the original model

or not. For the Alloy 6 models, non-equivalent mutants account

for 68.2% of the total number of mutants. Broken down by the

origin of the model, non-equivalent mutants account for 47.7%

of the Alloy 6 mutants, 79.2% of the trash model mutants, and

60.0% of the train model mutants.

Given the focus on adapting μAlloyτ to temporal logic,

we separated out the performance of temporal-based mu-

tants. Any mutant produced by POD, POI, VOD, and VOI
are automatically considered temporal mutants. In addition,

we counted any mutant that changes a temporal operator.

For instance, for the UOR operator, a mutant that changes

“always x” to “until x” would count as a temporal model.

Table V displays information about equivalent versus non-

equivalent mutants for temporal mutants under the column

μAlloyτ - τ Only. Under this column, #E is the number

of equivalent temporal mutants, #NE is the number of non-

equivalent temporal mutants, and %NE is the percentage of

mutants that are non-equivalent out of the total number of

temporal mutants generated. In addition, to help facilitate

a comparison, the next 4 columns reason over all mutants

created by μAlloyτ (μAlloyτ Full). %NE(s) is μAlloyτ ’s
percentage of static mutants that are non-equivalent, which is

any mutant that was not labeled temporal. The last 3 columns

depict percentages of temporal mutants to overall mutants for

a number of performance metrics. %τ is the percentage of

total mutants that are temporal, %NEτ is the percentage of

all non-equivalent mutants that are temporal, and %τRT is the

percentage of the runtime spent generating temporal mutants.

The results indicate that the rate at which temporal mutants

were equivalent versus non-equivalent did not significantly

differ compared to the total collection of mutants μAlloyτ
produces, although temporal-based mutants are slightly more

likely to be equivalent. To illustrate, across all models, for

temporal-based mutants, the average percentage of generated

mutants that are non-equivalent is 62.6% while the percentage

of mutants that focus on changing static operators produces

a 71.3% non-equivalent rate on average. At a more detailed

level, for the Alloy 6 models, the non-equivalent percentage is

47.1% for temporal-based mutants and 47.8% static mutants.

For all trash Alloy4Fun submissions, the non-equivalent per-

centage is 73.7% for temporal-based mutants and 83.4% tatic

mutants. Lastly, for all train Alloy4Fun submissions, the non-

equivalent percentage is 53.2% for temporal-based mutants

and 62.5% tatic mutants. Across the board, temporal-based

mutants account for 33.5% of the total number of mutants and

TABLE V
EQUIVALENT MUTANT RATES

Model μAlloyτ - τ Only μAlloyτ Full
#E #NE %NE %NE(s) %τ %τNE %τRT

buffer 70 65 48.1 46.3 31.3 24.3 28.9
leader 99 88 47.1 44.5 28.5 22.9 31.8
levents 89 90 50.3 48.3 26.1 21.2 28.9
trash 36 27 42.9 52.0 23.6 16.9 44.4
trash1 9 13 59.1 80.0 52.4 31.0 36.1
trash2 10 23 69.7 94.1 66.0 37.1 42.6
trash3 3 17 85.0 90.9 47.6 31.5 35.7
trash4 7 18 72.0 82.5 38.5 26.1 30.0
trash5 6 17 73.9 84.8 41.1 27.4 30.5
trash6 9 17 65.4 81.8 37.1 24.3 31.2
trash7 3 16 84.2 87.1 38.0 27.1 31.2
trash8 7 21 75.0 82.2 38.4 26.6 30.1
trash9 5 18 78.3 84.6 37.1 26.1 29.2
trash10 8 18 69.2 81.0 38.2 25.7 32.4
trash11 3 16 84.2 87.8 31.7 23.5 24.4
trash12 11 23 67.6 81.3 41.5 27.1 32.7
trash13 10 18 64.3 73.9 37.8 25.7 27.6
trash14 3 18 85.7 86.0 29.6 22.8 23.8
trash15 7 17 70.8 82.4 41.4 27.4 29.3
trash16 8 17 68.0 78.0 37.9 25.8 25.9
trash17 11 20 64.5 74.0 38.3 26.0 32.6
trsh18 7 21 75.0 83.3 36.8 25.6 29.0
trash19 6 22 78.6 82.2 38.4 27.2 28.2
trash20 5 25 83.3 90.5 41.7 28.4 34.6
train1 37 40 51.9 62.4 24.1 17.3 20.9
train2 38 44 53.7 62.3 25.8 18.7 20.2
train3 44 40 47.6 61.2 25.5 17.4 20.4
train4 40 40 50.0 61.6 24.8 17.5 21.0
train5 42 50 54.3 64.0 24.1 17.5 19.0
train6 49 40 44.9 58.8 25.0 16.9 20.0
train7 43 50 53.8 62.6 27.4 19.7 22.9
train8 45 57 55.9 63.9 26.4 19.3 25.9
train9 49 53 52.0 62.4 29.0 20.2 30.8
train10 38 46 54.8 63.8 25.5 18.5 18.9
train11 43 53 55.2 63.1 27.6 20.0 23.0
train12 32 32 50.0 61.4 22.5 16.1 16.9
train13 44 65 59.6 63.1 31.1 23.0 28.4
train14 44 60 57.7 65.0 27.1 19.9 20.8
train15 46 50 52.1 62.4 28.2 19.8 22.5
train16 41 67 62.0 64.9 30.3 22.7 36.4
train17 56 52 48.1 59.9 30.9 20.9 29.0

AVG 28.4 6.2 62.6 71.3 33.5 23.2 28.0

account for 28.0% of the total runtime. Therefore, temporal-

based mutants do not seem to have any abnormal impact on

the overhead of generating a mutant at large.

Overall, we find that the number of equivalent mutants

generated is frequently around 40% of the total number of

non-equivalent mutants and does not seem to vary too much

based on the type of mutant (temporal vs static). In addition,

the generation of temporal-based mutants does not notably

impact the runtime overhead of mutant generation.

C. RQ3: Effectiveness of Fault Detection

We compare two different settings for μAlloyτ . For con-

figuration “Grouping,” the default subgroups are applied to

the mutation generation process, e.g. UOR will consider

unary temporal operators separate from unary set operators.

For configuration “Combined,” the subgroups are ignored,

and the mutation generation process considers all possible

operators, e.g. UOR will replace unary temporal and unary

set operators interchangeably. The latter configuration is the

viewpoint taken by TAR, a mutation-based automated repair

technique for Alloy [11]. TAR’s mutant operators reason only

over predicates and is thus a subset of μAlloyτ ’s mutant
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TABLE VI
COMPARISON OF ABILITY TO DETECT FAULTS IN MODELS.

Model Grouping Combined Diff C - G
#Mut #Test Time #D #T Pct #Mut #Test Time #D #T Pct #Mut #Test Time #D Pct

trash1 29 17 4.38 13 21 61.90 32 17 5.30 13 21 61.90 3 0 0.92 0 0.00
trash2 39 22 4.77 89 104 85.58 46 22 5.74 89 104 85.58 7 0 0.97 0 0.00
trash3 37 26 1.32 3 4 75.00 44 26 1.74 3 4 75.00 7 0 0.42 0 0.00
trash4 51 33 4.19 68 91 74.73 61 34 5.27 68 91 74.73 10 1 1.08 0 0.00
trash5 45 29 3.05 221 274 80.66 54 30 3.86 221 274 80.66 9 1 0.81 0 0.00
trash6 53 34 12.58 207 221 93.67 65 34 14.77 207 221 93.67 12 0 2.19 0 0.00
trash7 43 29 1.94 23 32 71.88 50 30 2.62 23 32 71.88 7 1 0.68 0 0.00
trash8 58 40 11.2 215 219 98.17 74 41 15.17 215 219 98.17 16 1 3.97 0 0.00
trash9 51 32 3.75 67 69 97.10 62 32 4.98 67 69 97.10 11 0 1.23 0 0.00
trash10 52 33 7.37 203 215 94.42 63 33 9.63 203 215 94.42 11 0 2.26 0 0.00
trash11 52 32 1.93 111 113 98.23 69 33 2.99 112 113 99.12 17 1 1.06 1 0.88
trash12 62 41 16.83 301 311 96.78 75 42 20.23 301 311 96.78 13 1 3.40 0 0
trash13 52 33 17.46 35 38 92.11 64 34 23.84 35 38 92.11 12 1 6.38 0 0
trash14 61 38 2.75 90 91 98.90 78 39 3.99 91 91 100.00 17 1 1.24 1 1.10
trash15 45 29 2.72 38 41 92.68 54 29 3.49 40 41 97.56 9 0 0.77 2 4.88
trash16 49 30 6.84 82 86 95.35 61 30 9.08 82 86 95.35 12 0 2.24 0 0
trash17 57 36 20.12 87 93 93.55 72 37 24.62 87 93 93.55 15 1 4.50 0 0
trash18 61 41 19.4 164 165 99.39 75 42 22.99 164 165 99.39 14 1 3.59 0 0
trash19 59 40 11.87 54 56 96.43 71 40 14.31 54 56 96.43 12 0 2.44 0 0
trash20 63 43 44.33 62 63 98.41 75 45 51.86 62 63 98.41 12 2 7.53 0 0
train1 191 104 20.99 35 43 81.40 253 119 32.23 35 43 81.40 62 15 11.24 0 0
train2 191 106 16.44 46 64 71.88 253 120 25.19 46 64 71.88 62 14 8.75 0 0
train3 190 102 22.47 119 150 79.33 256 117 34.24 119 150 79.33 66 15 11.77 0 0
train4 189 104 22.8 46 61 75.41 254 118 33.78 46 61 75.41 65 14 10.98 0 0
train5 235 133 21.71 121 129 93.80 326 152 37.00 121 129 93.80 91 19 15.29 0 0
train6 197 105 20.92 62 80 77.50 265 120 33.30 62 80 77.50 68 15 12.38 0 0
train7 204 113 19.29 33 33 100.00 274 128 30.16 33 33 100.00 70 15 10.87 0 0
train8 239 137 148.36 29 31 93.55 332 160 287.34 29 31 93.55 93 23 138.98 0 0
train9 209 118 52.01 81 82 98.78 278 135 77.57 81 82 98.78 69 17 25.56 0 0
train10 203 109 15.66 2 2 100.00 272 123 27.02 2 2 100.00 69 14 11.36 0 0
train11 212 117 26.8 13 16 81.25 282 135 47.86 16 16 100.00 70 18 21.06 3 18.75
train12 167 91 13.44 0 2 0.00 223 104 20.72 0 2 0.00 56 13 7.28 0 0
train13 217 119 28.07 10 10 100.00 289 135 40.29 10 10 100.00 72 16 12.22 0 0
train14 242 141 23.45 26 26 100.00 334 161 39.56 26 26 100.00 92 20 16.11 0 0
train15 203 114 21.61 31 31 100.00 281 129 33.84 31 31 100.00 78 15 12.23 0 0
train16 228 136 465.26 6 6 100.00 305 157 627.78 6 6 100.00 77 21 162.52 0 0
train17 197 108 67.96 12 15 80.00 266 125 91.43 12 15 80.00 69 17 23.47 0 0

Avg 122.51 67.30 40.70 87.24 161.84 78.67 47.72 87.93 39.32 8.00 15.13 0.69

operators. The “Combined” configuration is the same as

comparing TAR’s ability to detect faults if you only use TAR’s

first-order mutants and if the following mutation operators are

added to TAR (MOR, VOI, VOD, PBD, IEPE).

Table VI displays the fault detection capability of the two

configurations. Column Model displays the exercise under

consideration: all faulty submissions for the same predicate

are combined together in a single row, and the average number

for each metric is reported. The next 6 columns display

performance information about the “Grouping” configuration.

#Mut is the number of non-equivalent mutants, #Test is the

number of tests generated and Time is the mutant generation

runtime in seconds. This information is repeated from Table IV

for easier comparison. Then, column #D is the number of

faulty submissions detected, #T is the total number of faulty

submissions, and Pct displays the percentage of faulty sub-

missions that were detected. The next 6 columns repeat this

information for the combined configuration. Lastly, the next 5

columns present the difference between the configurations. For

each column, the value is created by subtracting the combined

configuration value from the grouping value.

Across all exercises and both configurations, μAlloyτ is able

to detect all the faults for six of the train exercises. For the

“Grouping” configuration, μAlloyτ is able to detect 90.8%

of the faulty models. Outside of train12, in which neither

configuration detects either of the 2 faulty submissions, the

“Grouping” configuration detects 62% or more of the fault

submissions per exercise and averages a detection rate of

89.75% for the trash exercises, 84.3% for the train exercises

for a combined average of 87.24%. To achieve this detection

rate, under the “Grouping” configuration, μAlloyτ generates

on average 67.3 tests: 26.65 tests on average for the trash

exercises and 115.12 tests on average for the train exercises.

These test suites are automatically created on average in 40.70

seconds: 12 seconds on average for the trash exercises and

74.42 seconds on average for the train exercises.

In addition, although non-equivalent mutants directly influ-

ence the tests, we do not find that the rate at which non-

equivalent mutants occur impacts the fault detection capability.

For example, for trash7, μAlloyτ detects 71.8% of the faulty

submissions, but 86% of the mutants generated were non-

equivalent. For train15, μAlloyτ detects 100% of the faulty

submissions, but 52.1% of the mutants generated were non-

equivalent. Then, for trash9, μAlloyτ is only able to detect

97.1% of the faulty submissions, and 78.2% of the mutants

generated were non-equivalent. Therefore, there does not ap-

pear to be a strong relationship between non-equivalent mutant

rates and the likelihood that μAlloyτ will detect a fault.
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There is a minor difference when comparing the fault de-

tection capability of the two configurations. The “Combined”
configuration is about to detect 7 faulty exercises that the

grouping configuration failed to, which is an increase in the

detection rate of only 0.13% to a total of 90.97% of total

faulty submissions detected. This slight increase in fault de-

tection does come at the expense of the overhead of μAlloyτ .
On average, in the “Combined” configuration, μAlloyτ will

generate 1.3× more mutants, which results in 1.1× more

test cases getting generated. These test cases do a human to

provide the oracle; therefore, the “Combined” configuration

slightly increases the human effort needed. However, the main

detriment is that the runtime increases by 1.42×.

Overall, the results support that μAlloyτ is effective at

detecting faults in real-world models. Moreover, taking all
three research questions into account, we believe μAlloyτ can
be invaluable to novice users, helping them developer more
reliable software models and easing the adoption of Alloy.

D. Threats to Validity

The Alloy4Fun benchmark is representative of mistakes that

novice Alloy users would make; thus, our results for fault

detection may not generalize to faulty models made by expert

users or non-educationally driven models. While μAlloyτ is

intended to benefit all Alloy users, we believe that novice

users are more likely to seek out the use of μAlloyτ to build

confidence in the accuracy of their model. In addition, while

Trash can be viewed a toy model, Train is a noticeably more

robust model that is derived from real-world train systems in

Alloy [12]. Therefore, this is a good variety of complexity of

predicate formulas throughout the Alloy4Fun benchmark.

VI. RELATED WORK

Testing and Debugging Alloy Models. The most closely

related work to μAlloyτ is TAR, a mutation-oriented repair

technique that is aimed at repairing Ally4Fun models. There

are three main. First, because of the execution environment for

Alloy4Fun, TAR does not define any mutation operators over

signatures or relations. As a result, TAR can simply use the bi-

conditional operator when checking equivalence. Second, TAR

views mutant operators at a higher granularity than μAlloyτ .
For instance, for a binary formula, the binary logical operators

are combined together into one mutant operator group. Since

TAR only mutates faulty locations and does not generate all

possible first-order mutants, TAR can afford to make this

tradeoff in granularity. Lastly, TAR does not perform mutation

testing but instead applies chains mutants to a faulty location

searching for a valid patch. As a result, TAR’s execution

is tailored to strategically generate higher and higher orders

of mutants until a patch is found. In comparison, μAlloyτ
generates all possible first-order mutants, performs traditional

mutation testing, and importantly, produces a test suite that

will achieve a 100% mutant score. Since TAR’s mutants are a

subet of μAlloyτ ’s mutants, we did not do a direct comparison

of mutant operators. However, our combined configuration

takes TAR’s perspective for grouping mutant operators.

Besides μAlloyτ and TAR, there are several bodies of work

that focus on testing and debugging Alloy models. Three make

use of AUnit. AlloyFL is a hybrid fault localization technique

that takes a faulty Alloy model and an AUnit test suite and

returns a ranked list of suspicious locations [32]. ARepair is a

generate and validate automated repair technique that uses AU-

nit test cases to outline expected behavior [30]. ICEBAR ex-

tends ARepair to additionally consider built-in Alloy assertions

to guide the repair and check candidate patches [15]. There

are also several debugging techniques for Alloy that do not

utilize AUnit tests. ATR is an Alloy repair technique that tries

to find patches based on a preset number of templates and uses

Alloy assertions as an oracle. BeAFix is an automated repair

technique that uses a bounded exhaustive search [9]. FLACK

is a fault localization technique that locates faults by using a

partial max sat toolset to compare the difference between a

satisfying instance of a predicate and a counterexample from

an assertion over that predicate [36]. These techniques focus

heavily on using assertions, but assertions have to be written

in first-order logic and can be incorrectly specified. None of

these frameworks support temporal logic.

Mutation Testing. Mutation testing [13], [16] is an active

research area [18] that is well studied for imperative lan-

guages but is lesser explored for declarative languages [7].

Closely related work introduces mutation testing for model

checkers [3], [8], [24], which reason over linear temporal logic

but the automated analysis is different. Our work focuses on

bounded scenario enumeration while model checkers perform

an exhaustive search of the state space, which results in

the execution and checking of mutations requiring different

algorithmic approaches. Often, mutation testing for declarative

languages focuses on mutating specifications for imperative

code, often with mutations applicable to both the specification

and the imperative code. Our work on mutation testing for

Alloy is closest in spirit to Srivatanakil et al. [26] who define

mutation operators for CSP specifications written using FDR2

syntax [1]. Aichernig and Salas [2] define specification muta-

tion for OCL and apply it to pre/post-condition specifications

for constraint-based testing. In addition, MuCheck introduces

mutation testing for Haskel [19].

VII. CONCLUSION

Alloy 6 introduces linear temporal logic to Alloy, making

Alloy a more versatile modeling language. However, this

increased expressibility comes at a cost: there are more ways

users can incorrectly specify a property. μAlloy is a mutation

testing framework for Alloy 5 and earlier. μAlloy both per-

forms mutation testing and has the capability of generating a

mutant-killing test suite. This paper introduces μAlloyτ , which

expands μAlloy to perform mutation testing over temporal

models. μAlloyτ also updates AUnit to define what a temporal

test case looks like. Experimental results show that μAlloyτ
has a minor overhead and the test suites produced by μAlloyτ
are effective at revealing several faults in real-world faulty

temporal models. Moreover, μAlloyτ opens to door to update

AlloyFL and ARepair to handle the new temporal constructs.
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